LORA微调,让大模型更平易近人

技术背景

最近和大模型一起爆火的,还有大模型的微调方法。

这类方法只用很少的数据,就能让大模型在原本表现没那么好的下游任务中“脱颖而出”,成为这个任务的专家。

而其中最火的大模型微调方法,又要属LoRA

增加数据量和模型的参数量是公认的提升神经网络性能最直接的方法。目前主流的大模型的参数量已扩展至千亿级别,「大模型」越来越大的趋势还将愈演愈烈。

这种趋势带来了多方面的算力挑战。想要微调参数量达千亿级别的大语言模型,不仅训练时间长,还需占用大量高性能的内存资源。

为了让大模型微调的成本「打下来」,微软的研究人员开发了低秩自适应(LoRA)技术。LoRA 的精妙之处在于,它相当于在原有大模型的基础上增加了一个可拆卸的插件,模型主体保持不变。LoRA 随插随用,轻巧方便。

对于高效微调出一个定制版的大语言模型或者大视觉、大多模态模型来说,LoRA 是最为广泛运用的方法之一,同时也是最有效的方法之一。

LoRA微调原理是对预训练模型进行冻结,并在冻结的前提下,向模型中加入额外的网络层,然后只训练这些新增网络层的参数。因为新增参数数量较少,所以finetune的成本显著下降,同时也能获得和全模型微调类似的效果。

LoRA方法的核心思想是,这些大型模型其实是过度参数化的,其中的参数变化可以视为一个低秩矩阵。因此,可以将这个参数矩阵分解成两个较小的矩阵的乘积。在微调过程中,不需要调整整个大型模型的参数,只需要调整低秩矩阵的参数。

有了LoRA这类型的微调方法,可以使得大模型平易近人,可以让更多小公司或个人使用者能简单的在我们自己的数据集中调优模型,微调得到我们期望的输出。

LoRA 简介

LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGEMODELS 该文章在ICLR2022中提出,说的是利用低秩适配(low-rankadaptation)的方法,可以在使用大模型适配下游任务时只需要训练少量的参数即可达到一个很好的效果。

由于 GPU 内存的限制,在训练过程中更新模型权重成本高昂。

例如,假设我们有一个 7B 参数的语言模型,用一个权重矩阵 W 表示。在反向传播期间,模型需要学习一个 ΔW 矩阵,旨在更新原始权重,让损失函数值最小。

权重更新如下:W_updated = W + ΔW。

如果权重矩阵 W 包含 7B 个参数,则权重更新矩阵 ΔW 也包含 7B 个参数,计算矩阵 ΔW 非常耗费计算和内存。

由 Edward Hu 等人提出的 LoRA 将权重变化的部分 ΔW 分解为低秩表示。确切地说,它不需要显示计算 ΔW。相反,LoRA 在训练期间学习 ΔW 的分解表示,如下图所示,这就是 LoRA 节省计算资源的奥秘。

img

如上所示,ΔW 的分解意味着我们需要用两个较小的 LoRA 矩阵 A 和 B 来表示较大的矩阵 ΔW。如果 A 的行数与 ΔW 相同,B 的列数与 ΔW 相同,我们可以将以上的分解记为 ΔW = AB。(AB 是矩阵 A 和 B 之间的矩阵乘法结果。)

这种方法节省了多少内存呢?还需要取决于秩 r,秩 r 是一个超参数。例如,如果 ΔW 有 10,000 行和 20,000 列,则需存储 200,000,000 个参数。如果我们选择 r=8 的 A 和 B,则 A 有 10,000 行和 8 列,B 有 8 行和 20,000 列,即 10,000×8 + 8×20,000 = 240,000 个参数,比 200,000,000 个参数少约 830 倍。

当然,A 和 B 无法捕捉到 ΔW 涵盖的所有信息,但这是 LoRA 的设计所决定的。在使用 LoRA 时,我们假设模型 W 是一个具有全秩的大矩阵,以收集预训练数据集中的所有知识。当我们微调 LLM 时,不需要更新所有权重,只需要更新比 ΔW 更少的权重来捕捉核心信息,低秩更新就是这么通过 AB 矩阵实现的。

LoRA是怎么去微调适配下游任务的?

流程很简单,LoRA利用对应下游任务的数据,只通过训练新加部分参数来适配下游任务。

而当训练好新的参数后,利用重参的方式,将新参数和老的模型参数合并,这样既能在新任务上到达fine-tune整个模型的效果,又不会在推断的时候增加推断的耗时。

img

图中蓝色部分为预训练好的模型参数,LoRA在预训练好的模型结构旁边加入了A和B两个结构,这两个结构的参数分别初始化为高斯分布和0,那么在训练刚开始时附加的参数就是0。

A的输入维度和B的输出维度分别与原始模型的输入输出维度相同,而A的输出维度和B的输入维度是一个远小于原始模型输入输出维度的值,这也就是low-rank的体现(有点类似Resnet的结构),这样做就可以极大地减少待训练的参数了。

在训练时只更新A、B的参数,预训练好的模型参数是固定不变的。在推断时可以利用重参数(reparametrization)思想,将AB与W合并,这样就不会在推断时引入额外的计算了。

而且对于不同的下游任务,只需要在预训练模型基础上重新训练AB就可以了,这样也能加快大模型的训练节奏。


之前在基地的ChatGPT分享中提到过LLM的工作原理是根据输入文本通过模型神经网络中各个节点来预测下一个字,以自回归生成的方式完成回答。

实际上,模型在整个自回归生成过程中决定最终答案的神经网络节点只占总节点的极少一部分。如图1所示为多级反馈神经网络,以输入鹬蚌相争为例,真正参与运算的节点如下图2蓝色节点所示,实际LLM的节点数有数亿之多,我们称之为参数量。 作者:神州数码云基地

神经网络包含许多稠密层,执行矩阵乘法运算。这些层中的权重矩阵通常具有满秩。LLM具有较低的“内在维度”,即使在随机投影到较小子空间时,它们仍然可以有效地学习。

假设权重的更新在适应过程中也具有较低的“内在秩”。对于一个预训练的权重矩阵W0 ∈ Rd×k,我们通过低秩分解W0 + ∆W = W0 + BA来表示其更新,其中B ∈ Rd×r,A ∈ Rr×k,且秩r ≤ min(d,k)。在训练过程中,W0被冻结,不接收梯度更新,而A和B包含可训练参数。需要注意的是,W0和∆W = BA都与相同的输入进行乘法运算,它们各自的输出向量在坐标上求和。前向传播公式如下:h = W0x + ∆Wx = W0x + BAx

在图3中我们对A使用随机高斯随机分布初始化,对B使用零初始化,因此在训练开始时∆W = BA为零。然后,通过αr对∆Wx进行缩放,其中α是r中的一个常数。在使用Adam优化时,适当地缩放初始化,调整α的过程与调整学习率大致相同。因此,只需将α设置为我们尝试的第一个r,并且不对其进行调整。这种缩放有助于在改变r时减少重新调整超参数的需求。

LoRa微调ChatGLM-6B

有时候我们想让模型帮我们完成一些特定任务或改变模型说话的方式和自我认知。作为定制化交付中心的一员,我需要让“他”加入我们。先看一下模型原本的输出。

接下来我将使用LoRa微调将“他”变成定制化交付中心的一员。具体的LoRa微调及微调源码请前往Confluence查看LoRa高效参数微调准备数据集我们要准备的数据集是具有针对性的,例如你是谁?你叫什么?谁是你的设计者?等等有关目标身份的问题,答案则按照我们的需求进行设计,这里列举一个例子

设置参数进行微调

CUDA_VISIBLE_DEVICES=0 python ../src/train_sft.py \--do_train \--dataset self \--dataset_dir ../data \--finetuning_type lora \--output_dir path_to_sft_checkpoint \--overwrite_cache \--per_device_train_batch_size 4 \--gradient_accumulation_steps 4 \--lr_scheduler_type cosine \--logging_steps 10 \--save_steps 1000 \--learning_rate 5e-5 \--num_train_epochs 3.0 \--plot_loss \--fp16 影响模型训练效果的参数主要有下面几个
lora_rank(int,optional): LoRA 微调中的秩大小。这里并不是越大越好,对于小型数据集如果r=1就可以达到很不错的效果,即便增加r得到的结果也没有太大差别。
​
lora_alpha(float,optional): LoRA 微调中的缩放系数。
​
lora_dropout(float,optional): LoRA 微调中的 Dropout 系数。
​
learning_rate(float,optional): AdamW 优化器的初始学习率。如果设置过大会出现loss值无法收敛或过拟合现象即过度适应训练集而丧失泛化能力,对非训练集中的数据失去原本的计算能力。
​
num_train_epochs(float,optional): 训练轮数,如果loss值没有收敛到理想值可以增加训练轮数或适当降低学习率。 

很好,我们得到了理想的回答,这说明“小州”的人设已经建立成功了,换句话说,图二中蓝色节点(身份信息)的权重已经改变了,之后任何关于身份的问题都会是以“小州”的人设进行回答。

LoRA使用

HuggingFace的PEFT(Parameter-Efficient Fine-Tuning)中提供了模型微调加速的方法,参数高效微调(PEFT)方法能够使预先训练好的语言模型(PLMs)有效地适应各种下游应用,而不需要对模型的所有参数进行微调。

对大规模的PLM进行微调往往成本过高,在这方面,PEFT方法只对少数(额外的)模型参数进行微调,基本思想在于仅微调少量 (额外) 模型参数,同时冻结预训练 LLM 的大部分参数,从而大大降低了计算和存储成本,这也克服了灾难性遗忘的问题,这是在 LLM 的全参数微调期间观察到的一种现象PEFT 方法也显示出在低数据状态下比微调更好,可以更好地泛化到域外场景。

例如,使用PEFT-lora进行加速微调的效果如下,从中我们可以看到该方案的优势: 在这里插入图片描述

## 1、引入组件并设置参数
from transformers import AutoModelForSeq2SeqLM
from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, LoraConfig, TaskType
import torch
from datasets import load_dataset
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from transformers import AutoTokenizer
from torch.utils.data import DataLoader
from transformers import default_data_collator, get_linear_schedule_with_warmup
from tqdm import tqdm
​
## 2、搭建模型
​
peft_config = LoraConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1)
​
model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)
​
## 3、加载数据
dataset = load_dataset("financial_phrasebank", "sentences_allagree")
dataset = dataset["train"].train_test_split(test_size=0.1)
dataset["validation"] = dataset["test"]
del dataset["test"]
​
classes = dataset["train"].features["label"].names
dataset = dataset.map(lambda x: {"text_label": [classes[label] for label in x["label"]]},batched=True,num_proc=1,
)
​
## 4、训练数据预处理
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
​
def preprocess_function(examples):inputs = examples[text_column]targets = examples[label_column]model_inputs = tokenizer(inputs, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt")labels = tokenizer(targets, max_length=3, padding="max_length", truncation=True, return_tensors="pt")labels = labels["input_ids"]labels[labels == tokenizer.pad_token_id] = -100model_inputs["labels"] = labelsreturn model_inputs
​
​
processed_datasets = dataset.map(preprocess_function,batched=True,num_proc=1,remove_columns=dataset["train"].column_names,load_from_cache_file=False,desc="Running tokenizer on dataset",
)
​
train_dataset = processed_datasets["train"]
eval_dataset = processed_datasets["validation"]
​
train_dataloader = DataLoader(train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True
)
eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)
​
## 5、设定优化器和正则项
optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
lr_scheduler = get_linear_schedule_with_warmup(optimizer=optimizer,num_warmup_steps=0,num_training_steps=(len(train_dataloader) * num_epochs),
)
​
## 6、训练与评估
​
model = model.to(device)
​
for epoch in range(num_epochs):model.train()total_loss = 0for step, batch in enumerate(tqdm(train_dataloader)):batch = {k: v.to(device) for k, v in batch.items()}outputs = model(**batch)loss = outputs.losstotal_loss += loss.detach().float()loss.backward()optimizer.step()lr_scheduler.step()optimizer.zero_grad()
​model.eval()eval_loss = 0eval_preds = []for step, batch in enumerate(tqdm(eval_dataloader)):batch = {k: v.to(device) for k, v in batch.items()}with torch.no_grad():outputs = model(**batch)loss = outputs.losseval_loss += loss.detach().float()eval_preds.extend(tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True))eval_epoch_loss = eval_loss / len(eval_dataloader)eval_ppl = torch.exp(eval_epoch_loss)train_epoch_loss = total_loss / len(train_dataloader)train_ppl = torch.exp(train_epoch_loss)print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}")
​
## 7、模型保存
peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}"
model.save_pretrained(peft_model_id)
​
## 8、模型推理预测
​
from peft import PeftModel, PeftConfig
peft_model_id = f"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path)model = PeftModel.from_pretrained(model, peft_model_id)
model.eval()
​
inputs = tokenizer(dataset["validation"][text_column][i], return_tensors="pt")
print(dataset["validation"][text_column][i])
print(inputs)
with torch.no_grad():outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10)print(outputs)print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))

提问

LoRA 的权重可以组合吗?

答案是肯定的。在训练期间,我们将 LoRA 权重和预训练权重分开,并在每次前向传播时加入。

假设在现实世界中,存在一个具有多组 LoRA 权重的应用程序,每组权重对应着一个应用的用户,那么单独储存这些权重,用来节省磁盘空间是很有意义的。同时,在训练后也可以合并预训练权重与 LoRA 权重,以创建一个单一模型。这样,我们就不必在每次前向传递中应用 LoRA 权重。

weight += (lora_B @ lora_A) * scaling

我们可以采用如上所示的方法更新权重,并保存合并的权重。

同样,我们可以继续添加很多个 LoRA 权重集:

weight += (lora_B_set1 @ lora_A_set1) * scaling_set1weight += (lora_B_set2 @ lora_A_set2) * scaling_set2weight += (lora_B_set3 @ lora_A_set3) * scaling_set3...

我还没有做实验来评估这种方法,但通过 Lit-GPT 中提供的 scripts/merge_lora.py 脚本已经可以实现。

脚本链接:https://github.com/Lightning-AI/lit-gpt/blob/main/scripts/merge_lora.py

  1. 如果要结合 LoRA,确保它在所有层上应用,而不仅仅是 Key 和 Value 矩阵中,这样才能最大限度地提升模型的性能。

  2. 调整 LoRA rank 和选择合适的 α 值至关重要。提供一个小技巧,试试把 α 值设置成 rank 值的两倍。

  3. 14GB RAM 的单个 GPU 能够在几个小时内高效地微调参数规模达 70 亿的大模型。对于静态数据集,想要让 LLM 强化成「全能选手」,在所有基线任务中都表现优异是不可能完成的。想要解决这个问题需要多样化的数据源,或者使用 LoRA 以外的技术。

LoRA可以用于视觉任务吗?

可以的,经常结合stable diffusion等大模型进行微调,在aigc中经常使用,下期我们深入分析lora和lora该如何进行优化。

总结

针对LLM的主流微调方式有P-Tuning、Freeze、LoRa、instruct等等。由于LoRa的并行低秩矩阵几乎没有推理延迟被广泛应用于transformers模型微调,另一个原因是ROI过低,对LLM的FineTune所需要的计算资源不是普通开发者或中小型企业愿意承担的。而LoRa将训练参数减少到原模型的千万分之一的级别使得在普通计算资源下也可以实现FineTune。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/336581.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VMware ESXi 7.0 U3q 发布 - 领先的裸机 Hypervisor

VMware ESXi 7.0 U3q 发布 - 领先的裸机 Hypervisor VMware ESXi 7.0 Update 3 Standard & All Custom Image for ESXi 7.0U3 Install CD 请访问原文链接:https://sysin.org/blog/vmware-esxi-7-u3/,查看最新版。原创作品,转载请保留出…

[pdf,epub]《软件方法》2024版电子书共290页(202405更新)

DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 已上传本账号CSDN资源。 或者到以下链接下载: http://www.umlchina.com/url/softmeth2024.html,或点击“阅读原文”。 如果需要提取码:umlc 已排…

浅谈网络安全态势感知

前言 网络空间环境日趋复杂,随着网络攻击种类和频次的增加,自建强有力的网络安全防御系统成为一个国家发展战略的一部分,而网络态势感知是实现网络安全主动防御的重要基础和前提。 什么是网络安全态势感知? 态势感知一词来源于对…

图形学初识--空间变换

文章目录 前言正文矩阵和向量相乘二维变换1、缩放2、旋转3、平移4、齐次坐标下总结 三维变换1、缩放2、平移3、旋转绕X轴旋转:绕Z轴旋转:绕Y轴旋转: 结尾:喜欢的小伙伴可以点点关注赞哦 前言 前面章节补充了一下基本的线性代数中…

软件安全复习

文章目录 第一章 软件安全概述1.1 信息定义1.2 信息的属性1.3 信息安全1.4 软件安全1.5 软件安全威胁及其来源1.5.1 软件缺陷与漏洞1.5.1.1 软件缺陷1.5.1.2 漏洞1.5.1.3 软件漏洞1.5.1.4 软件缺陷和漏洞的威胁 1.5.2 恶意软件1.5.2.1 恶意软件的定义1.5.2.2 恶意软件的威胁 1.…

Mysql搭建主从同步,docker方式(一主一从)

服务器:两台Centos9 用Docker搭建主从 使用Docker拉取MySQL镜像 确保两台服务器都安装好了docker 安装docker请查看:Centos安装docker 1.两台服务器都先拉取mysql镜像 docker pull mysql 2.我这里是在 /opt/docker/mysql 下创建mysql的文件夹用来存…

java人口老龄化社区服务与管理平台源码(springboot+vue+mysql)

风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的人口老龄化社区服务与管理平台。项目源码以及部署相关请联系风歌,文末附上联系信息 。 项目简介: 人口老龄化…

在线思维导图编辑!3个AI思维导图生成软件推荐!

思维导图,一种以创新为驱动的视觉化思考工具,已经渗透到我们日常生活和工作的各个角落。当我们需要整理思绪、规划项目或者梳理信息时,思维导图总能提供极大的帮助。 近些年随着云服务等基础设施的完善,我们可以看到越来越多提供…

可视化大屏也在卷组件化设计了?分享一些可视化组件

hello,我是大千UI工场,这次分享一些可视化大屏的组件,供大家欣赏。(本人没有源文件提供)

Nacos 微服务管理

Nacos 本教程将为您提供Nacos的基本介绍,并带您完成Nacos的安装、服务注册与发现、配置管理等功能。在这个过程中,您将学到如何使用Nacos进行微服务管理。下方是官方文档: Nacos官方文档 1. Nacos 简介 Nacos(Naming and Confi…

【雷丰阳-谷粒商城 】【分布式基础篇-全栈开发篇】【00】补充

持续学习&持续更新中… 守破离 【雷丰阳-谷粒商城 】【分布式基础篇-全栈开发篇】【00】补充 WindowsCMD插件IDEAVsCode MavenvagrantDocker解决MySQL连接慢问题启动(自动)Docker注意切换到root用户远程访问MySQL MyBatisPlusVue模块化开发项目结构…

横截面分位数回归

一、分位数回归简介 分位数回归(英语:Quantile regression)是回归分析的方法之一。最早由Roger Koenker和Gilbert Bassett于1978年提出。一般地,传统的回归分析研究自变量与因变量的条件期望之间的关系,相应得到的回归…

Leecode热题100---二分查找--4:寻找两个正序数组的中位数

题目: 给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。 解法1、暴力解法(归并) 思路: 合并 nums1,nums2 为第三个数组 排序第三个数…

如何降本增效获得目标客户?AI企业使用联盟营销这个方法就对了!

AI工具市场正在迅速发展,现仍有不少企业陆续涌出,那么如何让你的工具受到目标群体的关注呢?这相比是AI工具营销人员一直在思考的问题。 为什么AI企业难以获客呢? 即使这个市场正蓬勃发展,也无法保证营销就能轻易成功…

创建特定结构的二维数组:技巧与示例

新书上架~👇全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我👆,收藏下次不迷路┗|`O′|┛ 嗷~~ 目录 一、引言:二维数组的奇妙世界 二、方法一:直接初始化 1. 初始化一个…

K8s集群之 存储卷 PV PVC

目录 默写 1 如何将pod创建在指定的Node节点上 2 污点的种类(在node上设置) 一 挂载存储​​​​​​​ 1 emptyDir存储卷 2 hostPath存储卷 ①在 node01 节点上创建挂载目录 ② 在 node02 节点上创建挂载目录 ③ 创建 Pod 资源 ④ 在master上检测一下:…

Hadoop3:HDFS中DataNode与NameNode的工作流程

一、DataNode中的数据情况 数据位置 /opt/module/hadoop-3.1.3/data/dfs/data/current/BP-823420375-192.168.31.102-1714395693863/current/finalized/subdir0/subdir0块信息 每个块信息,由两个文件保存,xxx.meta保存的是数据长度、校验和、时间戳&am…

IEEE Latex模版踩雷避坑指南

参考文献 原Latex模版 \begin{thebibliography}{1} \bibliographystyle{IEEEtran}\bibitem{ref1} {\it{Mathematics Into Type}}. American Mathematical Society. [Online]. Available: https://www.ams.org/arc/styleguide/mit-2.pdf\bibitem{ref2} T. W. Chaundy, P. R. Ba…

搜索自动补全-elasticsearch实现

1. elasticsearch准备 1.1 拼音分词器 github地址:https://github.com/infinilabs/analysis-pinyin/releases?page6 必须与elasticsearch的版本相同 第四步,重启es docker restart es1.2 定义索引库 PUT /app_info_article {"settings": …

秋招突击——算法——模板题——区间DP(1)——加分二叉树

文章目录 题目描述思路分析实现代码分析总结 题目描述 思路分析 实现代码 不过我的代码写的真的不够简洁&#xff0c;逻辑不够清晰&#xff0c;后续多练练吧。 // 组合数问题 #include <iostream> #include <algorithm>using namespace std;const int N 35; int…