医疗保健数据接口_医疗保健中的人工智能

医疗保健数据接口

Introduction

介绍

Artificial intelligence refers to simulating the behavior of humans, so that machines can be programmed to perform intelligent behavior and mimic human actions. It is a branch of computer science dealing with building smart machines which can perform actions, typically needing human intelligence. With the availability of huge data, faster computation power, and technology advancement in machine learning and deep learning is providing a paradigm shift in across all the sectors. Artificial Intelligence (AI) in healthcare leverages complex algorithms to emulate human behavior in the data exploration, analysis and training the models, and comprehension of complicated medical and healthcare data. In this article, we will review the key applications of artificial intelligence in the healthcare sector.

人工智能是指模拟人类的行为,以便可以对机器进行编程以执行智能行为并模仿人类的行为。 它是计算机科学的一个分支,涉及构建智能机器,这些机器可以执行通常需要人类智能的动作。 随着海量数据的可用性,更快的计算能力以及机器学习和深度学习中的技术进步,所有领域都发生了范式转变。 医疗保健中的人工智能(AI)利用复杂的算法在数据探索,分析和训练模型以及理解复杂的医疗和保健数据中模拟人类行为。 在本文中,我们将回顾人工智能在医疗保健领域的关键应用。

Abstract

抽象

Artificial intelligence (AI) has made significant progress in the recent years and is poised to transform the healthcare sector. Deep learning algorithms can deal with increasing amounts of data provided by wearables, smartphones, and other mobile monitoring sensors in different areas of medicine (Briganti & Le Moine, 2020). This article provides a perspective on how medical field can leverage AI in the future. It includes predictive modeling, and concepts such as feature selection, common algorithms used in the supervised learning and the selected application in the medical field. Also, it includes how deep learning, unsupervised learning techniques can be used to improvise patient outcomes.

近年来,人工智能(AI)取得了重大进展,并有望改变医疗保健行业。 深度学习算法可以处理可穿戴设备,智能手机以及其他医学领域的其他移动监控传感器提供的越来越多的数据(Briganti和Le Moine,2020年)。 本文提供了有关医疗领域未来如何利用AI的观点。 它包括预测建模和概念,例如特征选择,监督学习中使用的常见算法以及医学领域中的选定应用程序。 此外,它还包括如何使用深度学习,无监督学习技术来改善患者的预后。

Significance of AI in healthcare

人工智能在医疗保健中的意义

Correct diagnosis of the diseases by a human needs years of medical study, and still the manual diagnosis is an arduous and very time consuming process. Hence, the demand for experts is ever rising, which puts huge strain on the healthcare professionals and can also lead to delay in the diagnosis of life saving patients. Deep Learning, Machine Learning algorithms have made huge advancement which can make the diagnosis much faster, cheaper and more accessible. Machine learning algorithms can learn from vast available data and accurately classify the patterns in fraction of seconds. Some of the common applications –

由人类正确诊断疾病需要多年的医学研究,而手动诊断仍然是一个艰巨且非常耗时的过程。 因此,对专家的需求不断增长,这给医护人员带来了巨大压力,并且还可能导致挽救生命的患者的诊断。 深度学习,机器学习算法取得了长足的进步,可以使诊断更快,更便宜且更容易获得。 机器学习算法可以从大量可用数据中学习,并能在几秒钟内准确地对模式进行分类。 一些常见的应用–

· Lung cancer detection from the CT scans

·通过CT扫描检测肺癌

· Diabetic retinopathy indicators from the eye images

·眼睛图像中的糖尿病性视网膜病变指标

· Skin Lesions classification from the skin images

·皮肤图像中的皮肤病变分类

· Analyzing the risk of cardiac arrest from cardiac MRI images

·从心脏MRI图像分析心脏骤停的风险

AI is relevant to many healthcare areas including visually-orientated specialties such as radiology, pathology, ophthalmology, and dermatology due to the availability of large digital datasets. Deep learning algorithms leverage these datasets to train themselves and perform a specific tasks e.g. identifying a lesion in an image (Kulkarni et al., 2020). Precision medicine has the potential to improve the traditional symptom-driven practice of medicine by intelligently integrating multi-omics profiles with clinical, imaging, epidemiological and demographic details to allow a wide range of earlier interventions for advanced diagnostics and tailoring better and economical personalized treatment. Below figure depicts the role of artificial intelligence in traditional healthcare data analytics, and in precision medicine(Ahmed et al., 2020).

由于大量数字数据集的可用性,人工智能与许多医疗保健领域相关,包括以视觉为导向的专业,例如放射学,病理学,眼科和皮肤病学。 深度学习算法利用这些数据集进行自我训练并执行特定任务,例如识别图像中的病变(Kulkarni等人,2020年)。 精密医学可以通过将多组学概况与临床,影像学,流行病学和人口统计学信息进行智能集成,从而改善传统的症状驱动医学实践,从而为早期诊断和更广泛,更经济的个性化治疗提供广泛的早期干预措施。 下图描绘了人工智能在传统医疗数据分析和精密医学中的作用(Ahmed等人,2020)。

Image for post
Artificial Intelligence (AI) in precision medicine 精准医学中的人工智能(AI)

Machine learning algorithms can be broadly categorized under supervised, unsupervised and reinforcement learning. While supervised learning focus on classification / regression based on intelligence from historical data, however unsupervised learning focus on identifying hidden patterns and relationships from unlabeled data. Reinforcement learning is based on learning the behavior through trial and error from input data, while trying to optimize the outcome.

机器学习算法可以大致分为监督学习,无监督学习和强化学习。 监督学习的重点是基于历史数据的智能进行分类/回归,而无监督的学习重点在于从未标记的数据中识别隐藏的模式和关系。 强化学习的基础是通过尝试从输入数据中反复尝试来学习行为,同时尝试优化结果。

Image for post
Machine Learning Cycle 机器学习周期

Above figure depicts the typical components of machine learning cycle. It starts with data preparation and cleaning and applying transformations, normalizations or encoding, which is extremely critical for the performance of machine learning models. The next step involves selecting the right set of features to avoid overfitting or underfitting of the machine learning models. It can also include feature engineering, which leverage domain knowledge to create new features for improvising the machine learning models. The subsequent stages involves building machine learning models, training, optimizing, validating and selecting machine learning models to solve a problem (Waring et al., 2020).

上图描绘了机器学习周期的典型组成部分。 它从数据准备和清理以及应用转换,规范化或编码开始,这对于机器学习模型的性能至关重要。 下一步涉及选择正确的功能集,以避免过度拟合或不足拟合机器学习模型。 它还可以包括特征工程,该特征工程利用领域知识来创建用于改进机器学习模型的新特征。 随后的阶段包括建立机器学习模型,训练,优化,验证和选择机器学习模型以解决问题(Waring等人,2020年)。

The central promise of machine learning is to incorporate data from a variety of sources (clinical measurements and observations, biological –omics, experimental results, environmental information, wearable devices) into sensible models for describing and predicting human disease. The typical machine learning workflow begins with data acquisition, proceeds to feature engineering and then to algorithm selection and model development, and finally results in model evaluation and application. Below figure provides the overview of a typical machine learning workflow in the healthcare industry (Johnson et al., 2018) -

机器学习的中心承诺是将来自各种来源(临床测量和观察,生物组学,实验结果,环境信息,可穿戴设备)的数据整合到用于描述和预测人类疾病的明智模型中。 典型的机器学习工作流程从数据采集开始,进行特征工程,然后进行算法选择和模型开发,最后导致模型评估和应用。 下图概述了医疗保健行业中典型的机器学习工作流程(Johnson等,2018)-

Image for post
Machine Learning workflow in Healthcare 医疗保健中的机器学习工作流程

Recent Applications of Artificial Intelligence in Healthcare

人工智能在医疗领域的最新应用

With the emergence of massive compute power and data generated in the healthcare systems, it has provided good emergence of new AI applications, which also include faster development and trails of Covid-19 vaccine. Below are two recent applications, which are accurate and clinically relevant to benefit both the patients and the doctors by making diagnosis more straightforward.

随着医疗系统中大量计算能力和生成数据的出现,它提供了新的AI应用程序的良好出现,其中还包括更快的开发和Covid-19疫苗的研发。 以下是两个最近的应用,它们通过使诊断更加简单而准确且在临床上对患者和医生都有益。

The first of these algorithms is one of the multiple existing examples of an algorithm called DLAD (Deep Learning based Automatic Detection) to analyze chest radiographs and detect abnormal cell growth, such as potential cancers. The algorithm’s performance was compared to multiple physician’s detection abilities on the same images and outperformed 17 of 18 doctors. The second of these algorithms, LYNA (Lymph Node Assistant), to identify metastatic breast cancer tumors from lymph node biopsies. This isn’t the first application of AI to attempt histology analysis, but interestingly this algorithm could identify suspicious regions undistinguishable to the human eye in the biopsy samples given. LYNA was tested on two datasets and was shown to accurately classify a sample as cancerous or noncancerous correctly 99% of the time.

这些算法中的第一个是称为DLAD (基于深度学习的自动检测)算法的多个现有示例之一,该算法可分析胸部X射线照片并检测异常细胞生长,例如潜在的癌症。 将算法的性能与同一图像上多个医师的检测能力进行了比较,其性能优于18位医生中的17位。 这些算法中的第二种算法是LYNA (淋巴结辅助),可从淋巴结活检中识别出转移性乳腺癌肿瘤。 这不是AI尝试进行组织学分析的第一个应用程序,但有趣的是,该算法可以在给定的活检样本中识别人眼无法区分的可疑区域。 LYNA已在两个数据集上进行了测试,结果显示99%的时间正确地将样品正确分类为癌性或非癌性。

Image for post
Applications of Deep Learning based Automatic Detection (DLAD) in medicine 基于深度学习的自动检测(DLAD)在医学中的应用

The left panel shows the image fed into an algorithm. The right panel shows a region of potentially dangerous cells, as identified by an algorithm, that a physician should look at more closely. Both LYNA and DLAD serve as prime examples of algorithms that complement physicians’ classifications of healthy and diseased samples by showing doctors salient features of images(Greenfield, n.d.).

左面板显示了输入算法的图像。 右面板显示了由算法识别的潜在危险细胞区域,医生应仔细观察。 LYNA和DLAD都是算法的主要示例,通过显示医生的图像显着特征来补充医生对健康和患病样品的分类(Greenfield,nd)。

Conclusion

结论

The advancements of new techniques in artificial intelligence in clinical practice are significantly helping the patients and the healthcare professionals in accurately and faster diagnosis of the diseases, developing drugs and providing personalized treatments. It is a promising area for development which is rapidly evolving along with other modern areas genomics, precision medicines and teleconsultation. While the scientific research can help in faster development of new solutions to help the healthcare, more rigorous policies should be in place to ensure ethical usage from the evolution of the medicines. It is also significant for the physicians to be aware of the recent advancements in AI, which is going to transform the healthcare in the future.

人工智能在临床实践中的新技术的进步极大地帮助了患者和医护人员准确,快速地诊断疾病,开发药物并提供个性化治疗。 这是一个充满希望的发展领域,它与其他现代领域的基因组学,精密医学和远程咨询一起Swift发展。 虽然科学研究可以帮助更快地开发新的解决方案来帮助医疗保健,但应该制定更严格的政策以确保从药物开发中的伦理使用。 对于医生来说,了解AI的最新进展也很重要,这将改变未来的医疗保健。

Bibliography:

参考书目:

Ahmed, Z., Mohamed, K., Zeeshan, S., & Dong, X. (2020). Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database, 2020. https://doi.org/10.1093/database/baaa010

Ahmed,Z.,Mohamed,K.,Zeeshan,S.,&Dong,X.(2020年)。 具有多功能机器学习平台的人工智能开发,可提供更好的医疗保健和精准医学。 数据库2020年 。 https://doi.org/10.1093/database/baaa010

Briganti, G., & Le Moine, O. (2020). Artificial Intelligence in Medicine: Today and Tomorrow. Frontiers in Medicine, 7, 27. https://doi.org/10.3389/fmed.2020.00027

Briganti,G。和Le Moine,O。(2020)。 医学上的人工智能:今天和明天。 在医学上 ,7 前沿 ,27 https://doi.org/10.3389/fmed.2020.00027

Greenfield, D. (n.d.). Greenfield D. Artificial intelligence in medicine: applications, implications, and limitations. http://sitn.hms.harvard.edu/flash/2019/artificial-intelligence-in-medicine-applications-implications-and-limitations/. Published 2019. Accessed 8 Jan 2020. http://sitn.hms.harvard.edu/flash/2019/artificial-intelligence-in-medicine-applications-implications-and-limitations/

格林菲尔德(美国)。 Greenfield D.医学上的人工智能:应用,含义和局限性。 http://sitn.hms.harvard.edu/flash/2019/artificial-intelligence-in-medicine-applications-implications-and-limitations/。 出版于2019年.2020年1月8日访问 .http://sitn.hms.harvard.edu/flash/2019/artificial-intelligence-in-medicine-applications-implications-and-limitations/

Johnson, K. W., Torres Soto, J., Glicksberg, B. S., Shameer, K., Miotto, R., Ali, M., Ashley, E., & Dudley, J. T. (2018). Artificial Intelligence in Cardiology. Journal of the American College of Cardiology, 71(23), 2668–2679. https://doi.org/https://doi.org/10.1016/j.jacc.2018.03.521

约翰逊,KW,托雷斯·索托,J.,格利兹伯格,BS,莎米尔,K.,米奥托,R.,阿里,M.,阿什利,E. 心脏病学中的人工智能。 美国心脏病学会杂志71 (23),2668–2679。 https://doi.org/https://doi.org/10.1016/j.jacc.2018.03.521

Kulkarni, S., Seneviratne, N., Baig, M. S., & Khan, A. H. A. (2020). Artificial Intelligence in Medicine: Where Are We Now? In Academic Radiology (Vol. 27, Issue 1, pp. 62–70). Elsevier USA. https://doi.org/10.1016/j.acra.2019.10.001

Kulkarni,S.,Seneviratne,N.,Baig,MS,&Khan,AHA(2020)。 医学人工智能:我们现在在哪里? 在《 学术放射学》 (第27卷,第1期,第62–70页)中。 爱思唯尔美国。 https://doi.org/10.1016/j.acra.2019.10.001

Waring, J., Lindvall, C., & Umeton, R. (2020). Automated machine learning: Review of the state-of-the-art and opportunities for healthcare. Artificial Intelligence in Medicine, 104, 101822. https://doi.org/https://doi.org/10.1016/j.artmed.2020.101822

Waring,J.,Lindvall,C.,&Umeton,R.(2020年)。 自动化机器学习:回顾最新技术和医疗机会。 人工智能在医学上 ,104 101822. https://doi.org/https://doi.org/10.1016/j.artmed.2020.101822

翻译自: https://medium.com/analytics-vidhya/artificial-intelligence-in-healthcare-40ff4e0a346b

医疗保健数据接口

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/33669.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

思腾合力 AI 医疗行业解决方案,高效提升诊断效率与服务质量

AI 赋能医疗,人工智能医疗简单说即以互联网为依托,通过基础设施的搭建及数据的收集,将人工智能技术及大数据服务应用于医疗行业中,提升医疗行业的诊断效率及服务质量。 在我国,人口老龄化、慢性病高速增长、医疗资源供…

互联网+智慧医疗:基于Python打造智慧医院项目之智能分诊

智慧医疗英文简称WIT120,是最近兴起的专有医疗名词,通过打造健康档案区域医疗信息平台,利用最先进的物联网技术,实现患者与医务人员、医疗机构、医疗设备之间的互动,逐步达到信息化。 随着计算机科学技术的飞速发展&am…

在线付费问诊互联网医院智慧医疗系统包含哪些功能

伴随着互联网的发展,互联网医疗的互联网医院应运而生。在线付费问诊能够完成快捷的线上医疗服务板块,让有需求的用户能够只需求通过渠道就能够完成医疗问诊过程,大大提高了用户在治病就医方面的体验感,同时也能缓解线下门诊科室就…

智慧医疗时代的数据标注如何更精准?

随着我国经济的不断增长,以及生命科学的迅速发展,国人预期寿命有了显著的提升。2019年,国人预期寿命达到了77.3岁,比1960年提高了33岁。人们的健康需求在人口老龄化等一系列因素的影响下持续增长,这意味着卫生系统将面…

医疗行业售前100问之第3问:医院的常用信息系统有哪些?

医院内网的常用信息系统: 公认的医院核心信息系统有4个:HIS、EMR、PACS、LIS。 HIS(医院管理信息系统) 简称HIS,以财务信息、病人信息和物资信息为主线,通过对信息的收集、存储、传递、统计、分析、综合查…

医疗行业的新选择:智能医疗管理模板

随着社会的发展,医疗行业也在不断地进步与发展,信息化已经成为医疗行业的重要一环。智能医疗管理应用作为新型医疗管理工具,已经成为中小型医院、门诊、美容机构等企业的必备软件之一。该应用包括患者管理、预约管理、诊断管理、住院管理、财…

医疗知识图谱问答系统探究(一)

这是 阿拉灯神丁Vicky 的第 23 篇文章 1、项目背景 为通过项目实战增加对知识图谱的认识,几乎找了所有网上的开源项目及视频实战教程。 果然,功夫不负有心人,找到了中科院软件所刘焕勇老师在github上的开源项目,基于知识图谱的医…

QA智能问答

是基于检索的还是基于生成式回答的是开放领域的还是限定领域的 问答系统分为开放领域和限定领域的智能问答系统 面向学生的智能聊天机器人 包含以下两个部分 问答模块聊天对话模块解决学生提出的问题与学生闲聊基于规则实现基于深度学习实现数据库为15个关于新生的问题公开…

浪潮信息助力医院智慧医疗建设走得既稳又快

在智慧医疗时代下,浪潮信息作为优质的大数据服务商,正在持续为医疗机构打造场景化、个性化数据基础设施,不断强化在医疗卫生领域的投入,让智慧医疗有“数”可依。日前,浪潮信息出席了2022中华医院信息网络大会&#xf…

互联网医院源码|互联网医院软件体现智慧医疗的优势

现在大家看病一般都会直接在互联网医院平台上去就诊,每次大家需要看病时,可以在手机上直接去预约指定的医生,同城周边的所有医院都是可以去直接选择的,这样也可以去帮助大家节省很多的看病时间,在互联网医院软件中所具…

医疗智能BI助你建立智慧医院

基于“智慧医院”的海量数据,虽看上去冗繁复杂,但却极具价值。通过对这些数据进行存储、清洗和挖掘,能够创造出极大的价值。医疗智能BI助你建立智慧医院,应用医疗智能BI不仅能够提升医疗服务运行效率和质量,还能满足患…

智慧医疗基础平台-02

医疗业务-区域卫健 区域医疗生态系统是一个不断完善不断演化的生态圈,从全民健康平台到的智慧卫生城市,再到健康大脑,内涵和外延不断的扩展。 1、全员健康信息平台 构建省、市、县(区)三级卫生信息云服务平台&#…

(完整项目系统)智能问诊,智慧医疗健康管理,智能药物推荐系统,智能食疗推荐,疾病诊断分析系统,医疗健康机器人系统

人工智能问诊,智慧医疗健康管理,智能药物推荐系统,智能食疗推荐,疾病诊断分析系统,医疗健康机器人系统 人工智能健康管理系统,语音交互,智能分析疾病,包含8000疾病智能分析&#xf…

互联网+智慧医疗:基于Python打造公益智慧医院项目之智能问答系统

智慧医疗英文简称WIT120,是最近兴起的专有医疗名词,通过打造健康档案区域医疗信息平台,利用最先进的物联网技术,实现患者与医务人员、医疗机构、医疗设备之间的互动,逐步达到信息化。 随着计算机科学技术的飞速发展&am…

使用python模拟简单客服机器人

使用python模拟简单客服机器人 文章目录 使用python模拟简单客服机器人1.安装MYSQL与Navicat1.1安装教程1.2数据导入数据库 2.开始搭建机器人2.1 连接数据库2.2 索引设置2.3 信息匹配2.4 问题关键字匹配2.5 编写主函数 3.结果展示4.鼠鼠的一些话 本次案例的背景为拥有一个装载用…

基于QT实现的在线群聊天

引言:由于自身的喜好和在校时的无聊,就产生了自己使用QT设计一个聊天app的想法。在产生这个想法和实现这些功能的过程中,遇到了很多的困难,但经过查询资料,查看文档等,也解决了这些问题,在自己的…

媲美ChatGPT的Bard你用了吗,看起来还不错!

在这个技术日新月异的时代,人工智能已成为我们生活中不可或缺的一部分。聊天机器人,以其独特的表现形式,备受人们追捧。在这里,笔者要向大家推荐几个不错的聊天机器人网站,其中包括Google Bard。看看他自己怎么模仿某位…

Google Bard使用初体验,与ChatGPT比较到底怎么样

文章目录 Google Bard 介绍如何使用Google bardbard和ChatGPT3.5的区别 本文讲述了Google bard的入门教程和使用技巧,并且与竞争对手ChatGPT进行了一个全方面的比较。这是 Google 不能输的战役,也是全面 AI 的时刻。 Google Bard 介绍 Google Bard已经于…

使用谷歌的kaptcha进行验证码验证

使用谷歌的kaptcha进行验证码验证 我的实现思路 1. jsp页面发出请求到Controller 1. Controller层接收请求去寻找对应的验证码视图 1. 验证码视图层生成验证码 1. 返会给jsp页面进行验证码显示 具体实现 引入jar包 <!--谷歌验证码生成 jar--><dependency><…

谷歌二次验证 Google Authenticator

后台登录要搞令牌&#xff0c;类似于steam令牌、企鹅令牌等等 开启Google的登陆二步验证&#xff08;即Google Authenticator服务&#xff09;后用户登陆时需要输入额外由手机客户端生成的一次性密码。 实现Google Authenticator功能需要服务器端和客户端的支持。服务器端负责…