TCP的重传机制

TCP 是一个可靠的传输协议,解决了IP层的丢包、乱序、重复等问题。这其中,TCP的重传机制起到重要的作用。

序列号和确认号

之前我们在讲解TCP三次握手时,提到过TCP包头结构,其中有序列号确认号
而TCP 实现可靠传输的方式之一,就是是通过序列号和确认应答。

  1. 序列号(Sequence Number):

    • TCP是基于数据流的,序列号用于标识数据流中的字节位置,它表示数据包中的第一个字节在整个数据流中的位置。
    • 接收方在接收到数据包后,会根据序列号对数据包进行排序和重组,确保数据的顺序正确
  2. 确认号(Acknowledgement Number):

    • 确认号用于确认接收方已经成功接收了数据,并且期望下一个接收到的数据包的序列号是多少。

    • 在TCP通信中,接收方会向发送方发送一个确认数据包,其中包含了确认号,表示接收到的数据包中的最后一个字节的下一个字节的序列号。

      在这里插入图片描述

我们可以用wireshark抓包来看一下TCP的序列号和确认号:
在这里插入图片描述

通过上图我们可以看到:

  1. 进行三次握手时,客户端的初始序列号是2924706275,服务端的初始序列号是1859008164。
  2. 发送第一个包时,序列号是2924706276,是初始序列号+1,表示当前数据是第一个字节,数据长度8字节。
  3. 服务端回复ACK时,确认号是2924706284,是客户端的初始序列号+9,表示已经接收到前8个字节,现在期待第9个字节。
  4. 客户端继续发第二个包,序列号2924706284,表示当前数据是第9个字节。
  5. 服务端回复ACK时,确认号是2924706292,是客户端的初始序列号+17,表示已经接收到前16个字节,现在期待第17个字节。

在wireshark中,可以显示相对的序列号,可以更直观地看到序列号的变化:
在这里插入图片描述

这里我们可以看到,服务端发的包,序列号一直是1,因为当前服务端只是接收数据,并没有发送数据,所以服务端的序列号一直是1,而客户端的确认号也一直是1,表示期待服务端发送第一个字节过来。

重传机制

正常情况下,当发送端的数据到达接收主机时,接收端主机会返回一个确认应答消息,表示已收到消息。
但在复杂的网络下,并不一定能顺利的进行数据传输,万一数据在传输过程中丢失了呢?针对数据包丢失的情况,TCP会用重传机制解决。

超时重传

重传机制的其中一个方式,就是在发送数据时,设定一个定时器,当超过指定的时间后,如果还没有收到对方的ACK确认应答报文,就会重发该数据,也就是我们常说的超时重传。
在这里插入图片描述

那么这个指定的时间,应该是多久比较合适呢?
这里先介绍两个概念:RTTRTO

  • RTT(Round-Trip Time) 往返时延,指的是数据发送时刻到接收到确认的时刻的差值,也就是包的往返时间
  • RTO(Retransmission Timeout),就是超时重传时间。

通常RTO应该略大于RTT

  • 如果RTO太短,有可能数据没有丢失就重发,增加网络拥塞。
  • 如果RTO太长,重发就慢,性能差。

由于网络的不稳定,RTT是经常变化的,导致RTO也会是一个动态变化的值。

如果超时重发的数据,再次超时的话,下一次重传的时间间隔则会加倍。
超时重传存在的问题是,超时周期可能相对较长。那是不是可以有更快的方式呢?

TCP用快速重传机制来解决超时重发的时间等待。

快速重传

发送方发包的时候,并不总是等待ACK的响应再发送下一个包,而是会在窗口大小内,连续发多个包:
在这里插入图片描述

如果其中一个包丢失了,而后续的包到达时,接收方会发丢失的包的ACK给发送方。当发送方连接收到三个相同的ACK时,就知道这个包丢失了,于是不用等重传定时,直接就可以重新发送了:
在这里插入图片描述

通过wireshark抓包,在过滤器中输入tcp.analysis.fast_retransmission,我们可以观察到快速重传的现象:

在这里插入图片描述
在这里插入图片描述

SACK

快速重传机制解决了超时时间的问题,但是它面临着另外一个问题:那就是重传的时候,是重传一个包,还是重传所有的包?像上面的例子,客户端发出19个包,当触发快速重传的时候,客户端只知道第2个包丢失了,那其他包是否丢失,客户端并不清楚,这时候有两种选择:

  • 重发2~19所有的包,显然会造成数据的浪费,因为后面17个包都是已经收到的。
  • 只重发第2个包。但如果第3个包也丢失的话,那么又得等到三次ACK才能重发第3个包,效率较低。

这时候,SACK(Selective Acknowledgment),选择性确认,就可以起作用了。
这种方式需要在TCP头部选项字段里加一个SACK的选项,它可以将已收到的数据的信息发送给发送方 ,这样发送方就可以知道哪些数据收到了,哪些数据没收到,知道了这些信息,就可以只重传丢失的数据了 。
在这里插入图片描述

在这个例子中,SACK表示15870601~15873581之间的数据是已经收到的,所以客户端只需要重发15869201~15870600之间的数据就行了。

由于TCP头部大小的限制,在选项中最多能支持四组SACK的数据

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/337747.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Artifactory清理二进制文件丢失的制品

一、摘要 当制品上传到 Artifactory 时,Artifactory 会在数据库中记录制品的相关元数据信息,包括文件路径、大小、校验和(如 MD5、SHA1)、上传时间、索引、依赖等。实际的制品二进制文件会存储在指定的存储后端,具体的…

基于Java+SpringBoot+Mybaties-plus+Vue+elememt + uniapp 新闻资讯 的设计与实现

一.项目介绍 本系统分为 后端 和 小程序端 后端:点击登录按钮 设置个人中心、 管理员账号数据维护、 基础数据维护、 短视频信息维护(包括查看短视频留言、短视频收藏)、 论坛维护(增删改查帖子信息,包括查…

docker查看容器目录挂载

查看命令 docker inspect --format{{ json .Mounts }} <container_id_or_name> | jq 示例 docker inspect --format{{ json .Mounts }} af656ae540af | jq输出

一篇文章让你学会专注

专注&#xff0c;字典的释义是&#xff1a;专心注意&#xff1b;精神贯注。 我个人理解的是&#xff1a;用力屏蔽无关的事物&#xff0c;全身心力地专门注意一个事物。 你关心的&#xff0c;才能注意到&#xff0c;注意到了&#xff0c;才能故意地注意&#xff0c;进而全身心力…

【Linux-RTC】

Linux-RTC ■ rtc_device 结构体■ RTC 时间查看与设置■ 1、时间 RTC 查看■ 2、设置 RTC 时间 ■ rtc_device 结构体 Linux 内核将 RTC 设备抽象为 rtc_device 结构体 rtc_device 结构体&#xff0c;此结构体定义在 include/linux/rtc.h 文件中 ■ RTC 时间查看与设置 ■ 1…

服务器主板电池

一、什么是服务器纽扣电池&#xff1f; 服务器纽扣电池&#xff0c;也叫CMOS电池&#xff0c;是一种非常小型的电池&#xff0c;通常与服务器主板上的CMOS芯片相结合&#xff0c;用于储存BIOS设置、时钟和其他关键系统信息。这种电池的体积通常比一枚硬币还小&#xff0c;而且…

d3dcompiler43.dll丢失怎么修复,分享几种有效的修复教程

电脑已经成为我们生活中不可或缺的一部分。然而&#xff0c;由于各种原因&#xff0c;电脑可能会出现一些问题&#xff0c;其中之一就是d3dcompiler43.dll文件丢失。这个文件是DirectX组件之一&#xff0c;用于编译和链接DirectX应用程序。当这个文件丢失时&#xff0c;可能会导…

DataCube 漏洞小结

在这里分享一下通过拖取 DataCube 代码审计后发现的一些漏洞&#xff0c;包括前台的文件上传&#xff0c;信息泄露出账号密码&#xff0c;后台的文件上传。当然还有部分 SQL 注入漏洞&#xff0c;因为 DataCube 采用的是 SQLite 的数据库&#xff0c;所以SQL 注入相对来说显得就…

MAB规范(2):Introduction 介绍

Chapter1 Introduction 1.1 指南目的 MathWorks咨询委员会&#xff08;MAB&#xff09;指南规定了Simulink和Stateflow建模的重要基本规则。这些建模指南的总体目的是让建模者和控制系统模型的使用者能够简单、共同地理解。 指南的主要目标是&#xff1a; • 可读性  提高…

Ubuntu 安装好虚拟环境后,找不到workon 命令

1、安装虚拟环境 pip3 install virtualenv pip3 install virtualenvwrapper 2、安装完成后 workon 命令。 找不到workon 命令 执行&#xff0c;source virtualenvwrapper.sh 执行后&#xff0c;在使用workon命令&#xff0c;即可完成。

day-36 删除链表的倒数第 N 个结点

思路 首先计算出链表的长度&#xff0c;然后删除第n个节点即可&#xff0c;但要注意考虑特殊情况 解题方法 特殊情况&#xff1a;1.删除节点为最后一个节点 2.删除节点为头结点 Code /*** Definition for singly-linked list.* public class ListNode {* int val;* …

MySQL十部曲之九:MySQL优化理论

文章目录 前言概述查询优化查询执行计划EXPLAIN获取表结构信息获取执行计划信息 EXPLAIN 输出格式如何使用EXPLAIN进行优化 范围访问优化单列索引的范围访问多列索引的范围访问 索引合并优化索引合并交叉访问算法索引合并联合访问算法索引合并排序联合访问算法 索引下推优化连接…

使用LeanCloud平台的即时通讯

LeanCloud 是领先的 Serverless 云服务&#xff0c;为产品开发提供强有力的后端支持&#xff0c;旨在帮助开发者降低研发、运营维护等阶段投入的精力和成本。 LeanCloud 整合了各项服务&#xff0c;让开发者能够聚焦在核心业务上&#xff0c;为客户创造更多价值。 *即时通讯 …

5月29日-shell复习

一.Shell概述 1&#xff09;Linux提供的Shell解析器有&#xff1a;sudo cat /etc/shells /bin/sh /bin/bash /usr/bin/sh /usr/bin/bash /bin/tcsh /bin/csh 2&#xff09;bash和sh的关系 cd /bin ll | grep bash 或者使用&#xff1a;ls -l /bin/ | grep bash 3&#xff0…

深入pandas:数据分析

目录 前言 第一点&#xff1a;导入模块 第二点&#xff1a;准备数据 第三点&#xff1a;简单的分析数据 第四点&#xff1a;【重点】数据透支 总结 前言 在数据分析与挖掘的领域&#xff0c;了解如何使用工具和方法来探索数据是至关重要的。本文将探讨如何利用Python中的…

MAB规范(1):概览介绍

前言 MATLAB的MAAB&#xff08;MathWorks Automotive Advisory Board&#xff09;建模规范是一套由MathWorks主导的建模指南&#xff0c;旨在提高基于Simulink和Stateflow进行建模的代码质量、可读性、可维护性和可重用性。这些规范最初是由汽车行业的主要厂商共同制定的&…

如何使用宝塔面板搭建Tipask问答社区网站并发布公网远程访问

文章目录 前言1.Tipask网站搭建1.1 Tipask网站下载和安装1.2 Tipask网页测试1.3 cpolar的安装和注册 2. 本地网页发布2.1 Cpolar临时数据隧道2.2 Cpolar稳定隧道&#xff08;云端设置&#xff09;2.3 Cpolar稳定隧道&#xff08;本地设置&#xff09; 3. 公网访问测试4.结语 前…

FreeRTOS基础(四):静态创建任务

上一篇博客&#xff0c;我们讲解了FreeRTOS中如何动态创建任务&#xff0c;那么这一讲&#xff0c;我们从实战出发&#xff0c;规范我们在FreeRTOS下的编码风格&#xff0c;掌握静态创建任务的编码风格&#xff0c;达到实战应用&#xff01; 目录 一、空闲任务和空闲任务钩子…

MT8781安卓核心板_MTK联发科Helio G99核心板规格参数

MT8781安卓核心板采用先进的台积电6纳米级芯片生产工艺&#xff0c;配备高性能Arm Cortex-A76处理器和Arm Mali G57 GPU&#xff0c;加上LPDDR4X内存和UFS 2.2存储&#xff0c;在处理速度和数据访问速度上都有着出色的表现。 MT8781还支持120Hz显示器&#xff0c;无需额外的DSC…

TK防关联引流系统:全球TikTok多账号运营的神器

在TikTok的生态中&#xff0c;高效运营多个账号已成为品牌全球推广的必经之路。为此&#xff0c;TK防关联引流系统应运而生&#xff0c;它是一款专为TikTok设计的效率神器&#xff0c;助您迅速搭建并管理全球多账号矩阵。该系统由先进的“防关联智能终端”硬件和智能的“TK防关…