大模型管理工具Ollama搭建及整合springboot

目录

一、Ollama介绍

1.1 什么是Ollama

1.2 Ollama特点与优势

二、Ollama本地部署

2.1 版本选择

2.2 下载安装包

2.3 执行安装

2.4 Ollama常用命令

三、使用Ollama部署千问大模型

3.1 千问大模型介绍

3.2 部署过程

四、springboot接入Ollama

4.1 引入Ollama依赖

4.2 添加配置文件

4.3 使用Ollama聊天api

五、写在结尾


一、Ollama介绍

1.1 什么是Ollama

Ollama是一个用于部署和运行各种开源大模型的工具,能够帮助用户快速在本地运行各种大模型,极大地简化了大模型在本地运行的过程。对用户来说,只需要通过执行几条命令就能在本地运行开源大模型,如Llama 2等。

官网地址:Ollama

1.2 Ollama特点与优势

Ollama具备如下特点和优势

  • 功能齐全
    • Ollama将模型权重、配置和数据捆绑到一个包中,定义成Modelfile。它优化了设置和配置细节,包括GPU使用情况,从而提高了模型运行的效率。
  • 轻量级
    • Ollama的代码简洁明了,运行时占用资源少。这使得它能够在本地高效地运行,不需要大量的计算资源。此外,它还支持热加载模型文件,无需重新启动即可切换不同的模型,这使得它非常灵活多变。
  • 易用性
    • Ollama提供了多种安装方式,支持Mac和Linux平台,并提供了Docker镜像。用户只需按照安装指南进行操作即可完成安装,无需具备专业的技术背景。
  • 捆绑模型组件
    • 它将模型权重、配置和数据捆绑到一个包中,称为 Modelfile,这有助于优化设置和配置细节,包括 GPU 使用情况。
  • 支持多种模型
    • Ollama 支持多种大型语言模型,如 Llama 2、Code Llama、Mistral、Gemma 等,并允许用户根据特定需求定制和创建自己的模型。
  • 跨平台支持
    • 支持 macOS 和 Linux 平台,Windows 平台的预览版也已发布。安装过程简单,用户只需访问 Ollama 的官方网站下载相应平台的安装包即可。

二、Ollama本地部署

接下来演示如何在本地的windows系统上安装Ollama,根据你的实际情况,也可以选择Linux系统进行部署

2.1 版本选择

进入网站之后,点击右上角的 Download按钮,根据个人的实际情况,选择不同类型的安装包进行部署,我这里选择的是Windows的版本;

注意,Ollama部署的时候,对服务器或机器是有一定要求的,所以需要根据你的机器配置情况进行选择,在Ollama的官网通过github的链接点进去,可以看到如下的相关参数指导说明,在这里,你部署的大模型参数越多,理论上来说,对机器的配置要求就越高,目前先关注这一点即可。

2.2 下载安装包

这里选择下载的是windows版本

2.3 执行安装

Ollama的安装比较简单,双击执行这个exe文件,等待安装完成即可

安装完成之后,点击开始进入下面的shell窗口

2.4 Ollama常用命令

cmd窗口输入Ollama,即可了解常用的Ollama命令

如何理解本机部署的这个Ollama呢?如果使用过Docker的同学对docker部署一些中间件应该不陌生,比如使用docker中部署mysql或redis,只需要运行一段docker命令即可完成,非常方便,类比于Ollama,是一个大模型的部署管理工具,只需要使用Ollama的命令,也可以快速部署起一个本地的大模型进行使用。

如果你需要使用Ollama部署大模型,可以在Ollama官网进行搜索,类似于你使用docker search 镜像名一样

如下,进入到某个大模型中,拷贝命令到shell窗口中执行即可

三、使用Ollama部署千问大模型

上面演示了基于本地windows操作系统搭建Ollama过程,下面我们使用Ollama部署一个大模型,这里使用Ollama部署千问大模型。

3.1 千问大模型介绍

“通义千问大模型”是阿里云推出的一个超大规模的语言模型,具有强大的归纳和理解能力,可以处理各种自然语言处理任务,包括但不限于文本分类、文本生成、情感分析等。此模型能够极大地提高了自然语言处理的效率和准确性,给用户提供了一种新的、简便的工具。

3.2 部署过程

在Ollama中搜索关键字qwen,然后选择一个参数相对较少(对本地的空间和资源占用减小)的进行运行

使用下面的命令运行

ollama run qwen:0.5b-chat 

然后等待模型下载完成运行起来之后就可以使用了,下面这个进度窗口是不是与docker部署中间件很相像

然后就可以输入文本,与千问大模型进行对话,而后,就可以基于部署的模型应用于实际工作或业务中进行结合使用

四、springboot接入Ollama

由于本地搭建了Ollama,并且在Ollama上安装了千问大模型,就可以将千问大模型当GPT一样使用进行交流,参考下面具体的对接步骤。

4.1 引入Ollama依赖

本地提前搭建一个springboot工程,然后引入Ollama核心依赖

        <dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-ollama-spring-boot-starter</artifactId></dependency>

4.2 添加配置文件

配置文件中添加Ollama相关的配置信息,注意的是,Ollama本地端口为11434

server:port: 8088spring:application:name: chat-001ai:ollama:base-url: http://localhost:11434chat:options:model: qwen:0.5b-chatopenai:api-key: 你的apikeybase-url: openai地址

4.3 使用Ollama聊天api

Ollama聊天API的核心对象为OllamaChatClient,与上述的spring ai中提供的client对象类似,在程序中可以直接调用其api,如下,传入一个msg参数,返回响应的文本内容

import jakarta.annotation.Resource;
import org.springframework.ai.ollama.OllamaChatClient;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;@RestController
public class OllamaChatController {@Resourceprivate OllamaChatClient ollamaChatClient;//http://localhost:8088/ollama/chat?msg=大数据的技术栈有哪些@GetMapping("/ollama/chat")public String ollamaChat(@RequestParam String msg){String resMsg = ollamaChatClient.call(msg);return resMsg;}}

启动服务调用一下接口,可以看到响应的内容,通过这种方式,相当于是利用spring ai接入了本地的大模型进行对话聊天。

也可以使用Prompt进行参数传递,看下面的接口

    @GetMapping("/ollama/chat/v2")public Object ollamaChatV2(@RequestParam String msg){Prompt prompt = new Prompt(msg);ChatResponse chatResponse = ollamaChatClient.call(prompt);return chatResponse;}

返回结果如下,返回这种结构的数据在实际使用的时候,需要对json中的字段进行解析即可

spring ai官网中也提供了Ollama的相关文档,地址:Ollama Chat :: Spring AI Reference,在文档中,可以找到很多有关Ollama的详细的配置参数,这些配置参数,都可以在Prompt对象或者配置文件中进行合理的使用,达到最佳的实践效果

比如,在下面的接口中,仍然使用Prompt对象,里面传入更多的参数选项做控制

    //http://localhost:8088/ollama/chat/v3?msg=中国排名前十的大学@GetMapping("/ollama/chat/v3")public Object ollamaChatV3(@RequestParam String msg){Prompt prompt = new Prompt(msg,OllamaOptions.create().withModel("qwen:0.5b-chat").withTemperature(0.4F));ChatResponse chatResponse = ollamaChatClient.call(prompt);return chatResponse.getResult().getOutput().getContent();}

再次调用一下接口,当然这个结果是否一定准确呢?对于结果的使用还需要做认真的鉴别

五、写在结尾

本文详细介绍了基于windows系统部署Ollama的过程,并演示了基于Ollama部署千问大模型的过程,以及如何与springboot对接,更详细和深入的可以参阅官网资料进一步学习,本文到此结束谢谢观看。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/338017.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

R语言ggplot2包绘制网络地图

重要提示&#xff1a;数据和代码获取&#xff1a;请查看主页个人信息&#xff01;&#xff01;&#xff01; 载入R包 rm(listls()) pacman::p_load(tidyverse,assertthat,igraph,purrr,ggraph,ggmap) 网络节点和边数据 nodes <- read.csv(nodes.csv, row.names 1) edges…

5.29工效学-人因工程人机交互

对于工效学这门课&#xff0c;一直都感觉很有意思&#xff0c;是一个值得再认真一点的课。可惜上课的时候效率不高&#xff0c;有感兴趣的东西课后也没有自行去拓展开来&#xff0c;前面的课我感觉还讲了比较重要的东西&#xff0c;但是&#xff0c;全忘了呢&#xff08;真的对…

Llama改进之——分组查询注意力

引言 今天介绍LLAMA2模型引入的关于注意力的改进——分组查询注意力(Grouped-query attention,GQA)1。 Transformer中的多头注意力在解码阶段来说是一个性能瓶颈。多查询注意力2通过共享单个key和value头&#xff0c;同时不减少query头来提升性能。多查询注意力可能导致质量下…

民国漫画杂志《时代漫画》第38期.PDF

时代漫画38.PDF: https://url03.ctfile.com/f/1779803-1248636380-dd7daa?p9586 (访问密码: 9586) 《时代漫画》的杂志在1934年诞生了&#xff0c;截止1937年6月战争来临被迫停刊共发行了39期。 ps: 资源来源网络!

Webrtc支持HEVC之FFMPEG支持HEVC编解码(一)

一、前言 Webrtc使用的FFMPEG(webrtc\src\third_party\ffmpeg)和官方的不太一样,使用GN编译,各个平台使用了不一样的配置文件 以Windows为例,Chrome浏览器也类似 二、修改配置文件 windows:chromium\config\Chrome\win\x64 其他平台: chromium\config\Chrome\YOUR_SYS…

基础—SQL—DQL(数据查询语言)分组查询

一、引言 分组查询的关键字是&#xff1a;GROUP BY。 二、DQL—分组查询 1、语法 SELECT 字段列表 FROM 表名 [ WHERE 条件 ] GROUP BY 分组字段名 [ HAVING 分组后过滤条件 ]; 注意&#xff1a; 1、[ ] 里的内容可以有可以没有。 2、这条SQL语句有两块指定条件的地方&#…

CSS Canvas鼠标点击特效之天女散花(文本粒子动画)

1.效果 2.代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><style>body,html {margin: 0;padding: 0;wi…

【SQL学习进阶】从入门到高级应用【三范式】

文章目录 什么是数据库设计三范式三范式一对多怎么设计多对多怎么设计一对一怎么设计最终的设计 &#x1f308;你好呀&#xff01;我是 山顶风景独好 &#x1f495;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01; &#x1f495;希望您在这里可以感受到一份…

微信小程序-页面配置

一、页面配置文件的作用 小程序中&#xff0c;每个页面都有自己的.json配置文件&#xff0c;用来对当前页面的窗口外观、页面效果等进行配置 二、页面配置和全局配置的关系 小程序中&#xff0c;app.json中的window节点&#xff0c;可以全局配置小程序中每个页面的窗口表现 …

牛客网刷题 | BC105 菱形图案

目前主要分为三个专栏&#xff0c;后续还会添加&#xff1a; 专栏如下&#xff1a; C语言刷题解析 C语言系列文章 我的成长经历 感谢阅读&#xff01; 初来乍到&#xff0c;如有错误请指出&#xff0c;感谢&#xff01; 描述 KiKi学习了循环&am…

Facebook代运营 | Facebook广告投放步骤及要点

Facebook体量大&#xff0c;素材的更新频率快&#xff0c;通过Facebook进行广告投放的用户也越来越多&#xff0c;Facebook坐拥大量用户&#xff0c;同时有着非常科学的用户画像构建系统和推送机制&#xff0c;对于很多广告涉足的伙伴来说&#xff0c;更加的友好。 1. 创建广告…

「计网」网络初识

&#x1f387;个人主页&#xff1a;Ice_Sugar_7 &#x1f387;所属专栏&#xff1a;计网 &#x1f387;欢迎点赞收藏加关注哦&#xff01; 网络初识 &#x1f349;IP 地址 & 端口号&#x1f349;网络协议&#x1f34c;TCP/IP 网络协议 &#x1f349;封装和分用&#x1f349…

数据隐私新篇章:Facebook如何保护用户信息

随着数字化时代的到来&#xff0c;数据隐私保护成为了社交媒体平台和用户共同关注的焦点。作为全球最大的社交网络之一&#xff0c;Facebook一直致力于保护用户的隐私和数据安全。本文将深入探讨Facebook在数据隐私保护方面的措施和实践&#xff0c;以及其如何开启数据隐私的新…

领域建模(系统操作复习)

习题 问题 考察点 领域建模 识别概念类 固定模板 Conceptual Class Category Examples specifications,designs, or descriptions of things roles of people containers of other things things in a container abstract noun concepts organizations events processes (…

车载电子电器架构 —— 智能座舱技术范围(万字长文精讲)

车载电子电器架构 —— 智能座舱技术范围 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明…

0基础认识C语言(理论+实操3)

所有籍籍无名的日子里 我从未看轻自己半分 小伙伴们&#xff0c;一起开始我们今天的话题吧 一、算法操作符 1.双目操作符 为何叫双目操作符呢&#xff1f;其实是因为我们进行加减乘除的时候&#xff0c;至少得需要两个数字进行这些运算&#xff0c;而这个数字就被称为操作数…

算法题解记录27+++随机链表的复制(百日筑基)

一、题目描述&#xff1a; 题目难度&#xff1a;中等 给你一个长度为 n 的链表&#xff0c;每个节点包含一个额外增加的随机指针 random &#xff0c;该指针可以指向链表中的任何节点或空节点。 构造这个链表的 深拷贝。 深拷贝应该正好由 n 个 全新 节点组成&#xff0c;其中每…

Leetcode - 周赛399

目录 一&#xff0c;3162. 优质数对的总数 I 二&#xff0c;3163. 压缩字符串 III 三&#xff0c;3164. 优质数对的总数 II 四&#xff0c; 3165. 不包含相邻元素的子序列的最大和 一&#xff0c;3162. 优质数对的总数 I 假设 x 是 nums1 数组中的值&#xff0c;y 是 nums2…

WebGL实现医学教学软件

使用WebGL实现医学教学软件是一个复杂但非常有益的项目&#xff0c;可以显著提升医学教育的互动性和效果。以下是详细的实现步骤&#xff0c;包括需求分析、技术选型、开发流程和注意事项。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合作…

Python自动实时查询预约网站的剩余名额并在有余额时发邮件提示

本文介绍基于Python语言&#xff0c;自动、定时监测某体检预约网站中指定日期的体检余额&#xff0c;并在有体检余额时自动给自己发送邮件提醒的方法。 来到春招末期&#xff0c;很多单位进入了体检流程。其中&#xff0c;银行&#xff08;尤其是四大行&#xff09;喜欢“海检”…