④单细胞学习-cellchat细胞间通讯

目录

1,原理基础

流程

受体配体概念

方法比较

计算原理

2,数据

3,代码运行

1,原理基础

原文学习Inference and analysis of cell-cell communication using CellChat - PMC (nih.gov)

GitHub - sqjin/CellChat: R toolkit for inference, visualization and analysis of cell-cell communication from single-cell data

流程

a 配体-受体相互作用数据库概述。CellChatDB考虑了配体-受体复合物的已知组成,包括具有多聚体配体和受体的复合物,以及几种辅因子类型:可溶性激动剂,拮抗剂,共刺激和共抑制膜结合受体。CellChatDB 包含 2021 个经过验证的交互,包括 60% 的分泌交互。此外,48%的相互作用涉及异聚分子复合物。b CellChat 要么要求用户分配单元格标签作为输入,要么根据作为输入提供的低维数据表示自动对单元格进行分组。c CellChat对通信概率进行建模,并识别重要的通信。d CellChat为不同的分析任务提供了多种可视化输出。层次图和圆图中的不同颜色表示不同的像元组。气泡图中的颜色与通信概率成正比,其中深色和黄色对应于最小和最大值。e CellChat通过图论、模式识别和流形学习等方法定量测量网络,以更好地促进细胞间通信网络的解释和设计原则的识别。除了分析单个数据集外,CellChat还描绘了不同背景下的信号变化,例如不同的发育阶段和生物条件。

受体配体概念
方法比较
  • iTALK和NicheNet用于在scRNA-seq数据中推断细胞间的通讯关系,但这些方法只使用一个配体/受体基因对,常常忽略了许多受体中的多亚基复合物的作用。(例如,来自TGFβ途径的可溶性配体通过I型和II型受体的异聚复合物发出信号。),
  • CellPhoneDB v2.0 可以预测两个细胞群之间的信号相互作用,解决了上述问题。但是,并未考虑其他重要的信号辅助因子,包括可溶性激动剂,拮抗剂以及刺激性和抑制性的膜结合型共受体。

CellChat细胞通讯分析(上)--文献解读 - 知乎 (zhihu.com)

文献阅读:使用 CellChat 推理和分析细胞-细胞通信 (qq.com)

计算原理

a) 鉴定差异表达的信号转导基因。为了推断细胞状态特异性通讯,我们首先使用显著性水平为 0.05 的 Wilcoxon 秩和检验,在给定的 scRNA-seq 数据集中鉴定了所有细胞群中差异表达的信号转导基因。

b) 集合平均表达式的计算。为了解释噪声效应,我们使用统计稳健的平均方法计算了给定细胞组中信号转导基因的集合平均表达。

c) 细胞间通讯概率的计算。

d) 鉴定具有统计学意义的细胞间通讯。通过随机排列细胞的组标签,然后重新计算通信概率P,使用排列检验来识别两个细胞组之间的显着相互作用。

cellchat的原理、cellchat能做哪些分析_哔哩哔哩_bilibili


2,数据

scRNA-seq data of human skin from patients with atopic dermatitis (figshare.com)

官方学习:focuslyj/CellChat - 码云 - 开源中国 (gitee.com)

tutorial · focuslyj/CellChat - 码云 - 开源中国 (gitee.com)

这个教程概述了使用 CellChat 对单个数据集进行细胞间通信网络的推理、分析和可视化的步骤。我们通过将 CellChat 应用于来自患者的病变(LS,患病)人类皮肤细胞的 scRNA-seq 数据来展示 CellChat 的多种功能。

3,代码运行
rm(list=ls())
library(CellChat)
library(patchwork)
library(ggplot2)
library(Seurat)
library(ggalluvial)#绘制桑基图
library(expm)
library(sna)
library(NMF)
options(stringsAsFactors = FALSE)##输入数据不自动转换成因子(防止数据格式错误)#数据:基因为行名,细胞为列名的基因表达矩阵(注意相关网络原因)
load(url("https://ndownloader.figshare.com/files/25950872")) #示例数据(正常+疾病)
#save(data_humanSkin,file = c("data_humanSkin.Rdata"))
rm(list=ls())
load("data_humanSkin.Rdata")
#数据查看
data.input = data_humanSkin$data # 提取标准化矩阵
meta = data_humanSkin$meta # a dataframe with rownames containing cell mata data
cell.use = rownames(meta)[meta$condition == "LS"] ##疾病组
#数据准备
data.input = data.input[, cell.use]
meta = meta[cell.use, ]
unique(meta$labels) # 检查细胞标签
#创建CellChat 对象
cellchat <- createCellChat(object = data.input, meta = meta, group.by = "labels")
cellchat <- addMeta(cellchat, meta = meta)#添加细胞信息
cellchat <- setIdent(cellchat, ident.use = "labels") # set "labels" as default cell identity
levels(cellchat@idents) # show factor levels of the cell labels
groupSize <- as.numeric(table(cellchat@idents)) # number of cells in each cell group#配体受体交互数据库查看
CellChatDB <- CellChatDB.human # use CellChatDB.mouse if running on mouse data
showDatabaseCategory(CellChatDB)
dplyr::glimpse(CellChatDB$interaction)
CellChatDB.use <- subsetDB(CellChatDB, search = "Secreted Signaling") # 分泌信号
cellchat@DB <- CellChatDB.use #在对象中设置使用的数据库
#预处理用于细胞通信分析的表达数据
cellchat <- subsetData(cellchat)
#future::plan("multiprocess", workers = 4) #可以不运行
cellchat <- identifyOverExpressedGenes(cellchat)#分析差异基因
cellchat <- identifyOverExpressedInteractions(cellchat)#
cellchat <- projectData(cellchat, PPI.human)#进行细胞通信网络的推断
cellchat <- computeCommunProb(cellchat, raw.use = TRUE)#计算通信概率并推断cellchat网络
cellchat <- filterCommunication(cellchat, min.cells = 10)#过滤
#信号通路级别推断细胞-细胞通信
cellchat <- computeCommunProbPathway(cellchat)
#计算整合的细胞通信网络
cellchat <- aggregateNet(cellchat)#进行可视化
groupSize <- as.numeric(table(cellchat@idents))
par(mfrow = c(1,2), xpd=TRUE)
netVisual_circle(cellchat@net$count,vertex.weight = groupSize, weight.scale = T, label.edge= F, title.name = "Number of interactions")
netVisual_circle(cellchat@net$weight, vertex.weight = groupSize,weight.scale = T, label.edge= F, title.name = "Interaction weights/strength")mat <- cellchat@net$weight
par(mfrow = c(3,4), xpd=TRUE)##如果可视化出现问题可以把前面的图片保存清空后再作图
for (i in 1:nrow(mat)) {mat2 <- matrix(0, nrow = nrow(mat), ncol = ncol(mat), dimnames = dimnames(mat))mat2[i, ] <- mat[i, ]netVisual_circle(mat2, vertex.weight = groupSize, weight.scale = T, edge.weight.max = max(mat), title.name = rownames(mat)[i])
}
dev.off()#细胞通信网络的可视化######################################
pathways.show <- c("CXCL") 
vertex.receiver = seq(1,4) # a numeric vector. 
netVisual_aggregate(cellchat, signaling = pathways.show,vertex.receiver = vertex.receiver)# Circle plot
par(mfrow=c(1,1))
netVisual_aggregate(cellchat, signaling = pathways.show, layout = "circle")# 弦图
par(mfrow=c(1,1))
netVisual_aggregate(cellchat, signaling = pathways.show, layout = "chord")#热图
par(mfrow=c(1,1))
netVisual_heatmap(cellchat, signaling = pathways.show, color.heatmap = "Reds")# Chord diagram
group.cellType <- c(rep("FIB", 4), rep("DC", 4), rep("TC", 4)) # grouping cell clusters into fibroblast, DC and TC cells
names(group.cellType) <- levels(cellchat@idents)
netVisual_chord_cell(cellchat, signaling = pathways.show,group = group.cellType, title.name = paste0(pathways.show, " signaling network"))#计算每个配体受体对整体信号通路的贡献,并可视化由单个配体受体对调节的细胞通信
netAnalysis_contribution(cellchat, signaling = pathways.show)#视化由单个配体受体对调节的细胞-细胞通信
pairLR.CXCL <- extractEnrichedLR(cellchat, signaling = pathways.show, geneLR.return = FALSE)
LR.show <- pairLR.CXCL[1,] # show one ligand-receptor pair
vertex.receiver = seq(1,4) # # Hierarchy plot a numeric vector
netVisual_individual(cellchat, signaling = pathways.show,  pairLR.use = LR.show, vertex.receiver = vertex.receiver)# Circle plot
netVisual_individual(cellchat, signaling = pathways.show, pairLR.use = LR.show, layout = "circle")#相关保存
pathways.show.all <- cellchat@netP$pathways
# check the order of cell identity to set suitable vertex.receiver
levels(cellchat@idents)
vertex.receiver = seq(1,4)
for (i in 1:length(pathways.show.all)) {# Visualize communication network associated with both signaling pathway and individual L-R pairsnetVisual(cellchat, signaling = pathways.show.all[i], vertex.receiver = vertex.receiver, layout = "hierarchy")# Compute and visualize the contribution of each ligand-receptor pair to the overall signaling pathwaygg <- netAnalysis_contribution(cellchat, signaling = pathways.show.all[i])ggsave(filename=paste0(pathways.show.all[i], "_L-R_contribution.pdf"), plot=gg, width = 3, height = 2, units = 'in', dpi = 300)
}#可视化由多个配体受体或信号通路调节的细胞通信
netVisual_bubble(cellchat, sources.use = 4, targets.use = c(5:11), remove.isolate = FALSE)
netVisual_bubble(cellchat, sources.use = 4, targets.use = c(5:11), signaling = c("CCL","CXCL"), remove.isolate = FALSE)netVisual_chord_gene(cellchat, sources.use = 4, targets.use = c(5:11), lab.cex = 0.5,legend.pos.y = 30)
# show all the interactions received by Inflam.DC
netVisual_chord_gene(cellchat, sources.use = c(1,2,3,4), targets.use = 8, legend.pos.x = 15)#使用小提琴/点图绘制信号基因表达分布
plotGeneExpression(cellchat, signaling = "CXCL")
plotGeneExpression(cellchat, signaling = "CXCL", enriched.only = FALSE)#提取与推断的L-R对或信号通路相关的信号基因#细胞通信网络系统分析############################
cellchat <- netAnalysis_computeCentrality(cellchat, slot.name = "netP") # the slot 'netP' means the inferred intercellular communication network of signaling pathways
netAnalysis_signalingRole_network(cellchat, signaling = pathways.show, width = 8, height = 2.5, font.size = 10)
#使用散点图在 2D 空间中可视化占主导地位的发射器(源)和接收器(目标)
gg1 <- netAnalysis_signalingRole_scatter(cellchat)
gg2 <- netAnalysis_signalingRole_scatter(cellchat, signaling = c("CXCL", "CCL"))
gg1 + gg2#哪些信号对某些细胞组的传出或传入信号贡献最大
ht1 <- netAnalysis_signalingRole_heatmap(cellchat, pattern = "outgoing")
ht2 <- netAnalysis_signalingRole_heatmap(cellchat, pattern = "incoming")
ht1 + ht2ht <- netAnalysis_signalingRole_heatmap(cellchat, signaling = c("CXCL", "CCL"))#识别和可视化分泌细胞的传出通信模式##############################
selectK(cellchat, pattern = "outgoing")#selectK推断模式的数量。
#当传出模式数为 3 时,Cophenetic 和Silhouette值都开始突然下降。
nPatterns = 3
cellchat <- identifyCommunicationPatterns(cellchat, pattern = "outgoing", k = nPatterns)netAnalysis_dot(cellchat, pattern = "outgoing")#绘制点图
selectK(cellchat, pattern = "incoming")#识别和可视化目标细胞的传入通信模式
nPatterns = 4
cellchat <- identifyCommunicationPatterns(cellchat, pattern = "incoming", k = nPatterns)# river plot桑基图
library(ggalluvial)
netAnalysis_river(cellchat, pattern = "incoming")
# dot plot
netAnalysis_dot(cellchat, pattern = "outgoing")#信号网络的流形和分类学习分析
cellchat <- computeNetSimilarity(cellchat, type = "functional")
cellchat <- netEmbedding(cellchat, type = "functional")
#> Manifold learning of the signaling networks for a single dataset
cellchat <- netClustering(cellchat, type = "functional")
#> Classification learning of the signaling networks for a single dataset
# Visualization in 2D-space
netVisual_embedding(cellchat, type = "functional", label.size = 3.5)#最后保存
saveRDS(cellchat, file = "cellchat_humanSkin_LS.rds")

程序员 - CellChat v2 教程 1:使用 CellChat 推理和分析细胞间通信 - 个人文章 - SegmentFault 思否

参考:

1:Inference and analysis of cell-cell communication using CellChat

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/338799.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

字符串操作java

题目&#xff1a; 描述 给定长度为n的只有小写字母的字符串s&#xff0c;进行m次操作&#xff0c;每次将[l,r]范围内所有c1字符改成c2&#xff0c;输出操作完的字符串 输入描述&#xff1a; 第一行两个数n,m 第二行一个字符串s 之后m行&#xff0c;每行两个数l 、r两个字符…

[DDR5 Jedec 4-1] 预充电命令 Precharge

依公知及经验整理&#xff0c;原创保护&#xff0c;禁止转载。 专栏 《深入理解DDR》 1. 预充电&#xff08;Precharge&#xff09;含义 由于SDRAM的寻址具体独占性&#xff0c;因此在进行完读写操作后&#xff0c;若需对同一L-Bank的另一行进行寻址&#xff0c;则必须先关闭原…

针对大模型的上下文注入攻击

大型语言模型&#xff08;LLMs&#xff09;的开发和部署取得了显著进展。例如ChatGPT和Llama-2这样的LLMs&#xff0c;利用庞大的数据集和Transformer架构&#xff0c;能够产生连贯性、上下文准确性甚至具有创造性的文本。LLMs最初和本质上是为静态场景设计的&#xff0c;即输入…

idea+tomcat+mysql 从零开始部署Javaweb项目(保姆级别)

文章目录 新建一个项目添加web支持配置tomcat优化tomcat的部署运行tomcatidea数据库连接java连接数据库 新建一个项目 new project&#xff1b;Java&#xff1b;选择jdk的版本&#xff1b;next&#xff1b;next&#xff1b;填写项目名字&#xff0c;选择保存的路径&#xff1b;…

C++进阶之AVL树+模拟实现

目录 目录 一、AVL树的基本概念 1.1 基本概念 二、AVL树的模拟实现 2.1 AVL树节点的定义 2.2 插入操作 2.3 旋转操作 2.4 具体实现 一、AVL树的基本概念 1.1 基本概念 二叉搜索树虽可以缩短查找的效率&#xff0c;但如果数据有序或接近有序二叉搜索树将退化为单支树&…

微信里的东西怎么打印出来呢

随着微信的普及&#xff0c;我们的日常生活和工作都离不开这个强大的社交工具。无论是重要的工作文件、孩子的作业、还是精彩的旅行照片&#xff0c;我们都习惯在微信里保存和分享。但是&#xff0c;当需要将这些微信里的内容打印出来时&#xff0c;很多人可能会感到困惑和麻烦…

【C++】vector的模拟实现

&#x1f497;个人主页&#x1f497; ⭐个人专栏——C学习⭐ &#x1f4ab;点击关注&#x1f929;一起学习C语言&#x1f4af;&#x1f4ab; 目录 导读 1. vector的核心框架接口 2. 构造函数 2.1 基本构造 2.2 拷贝构造&#xff08;传统写法&#xff09; 2.3 析构函数 2…

验证外星语词典

在解决算法题时&#xff0c;哈希表是经常被使用的工具&#xff0c;可以用来记录字符串中字母出现的次数&#xff0c;字符串中字符出现的位置等&#xff0c;这里用到的就是利用哈希表储存字符串中字符出现的的位置。 “外星语”的字母表顺序是不一样的&#xff0c;所以…

SIMBA:单细胞嵌入与特征

目前大多数单细胞分析管道仅限于细胞嵌入&#xff0c;并且严重依赖于聚类&#xff0c;而缺乏显式建模不同特征类型之间相互作用的能力。此外&#xff0c;这些方法适合于特定的任务&#xff0c;因为不同的单细胞问题的表述方式不同。为了解决这些缺点&#xff0c;SIMBA作为一种图…

43.自定义线程池(一)

ThreadPool是线程池&#xff0c;里面是一定数量的线程&#xff0c;是消费者。 BlockingQueue阻塞队列&#xff0c;线程池中的线程会从阻塞队列中去拿任务执行。任务多了线程池处理不过来了&#xff0c;就会到Blocking Queue中排队&#xff0c;等待执行。链表结构&#xff0c;特…

使用python实现超市购物系统(一个小例子)

可以增加其他功能&#xff0c;这里就展示一个小的例子~

Crosslink-NX器件应用连载(11): 图像(数据)远程传输

作者&#xff1a;Hello&#xff0c;Panda 大家下午好&#xff0c;晚上好。这里分享一个Lattice Crosslink-NX器件实现图像或数据&#xff08;卫星数据、雷达数据、ToF传感器数据等&#xff09;远程传输的案例&#xff08;因为所描述的内容颇杂&#xff0c;晒图不好晒&#xff…

【刷题】初探递归算法 —— 消除恐惧

送给大家一句话&#xff1a; 有两种东西&#xff0c; 我对它们的思考越是深沉和持久&#xff0c; 它们在我心灵中唤起的惊奇和敬畏就会日新月异&#xff0c; 不断增长&#xff0c; 这就是我头上的星空和心中的道德定律。 -- 康德 《实践理性批判》 初探递归算法 1 递归算…

我给线程池管理框架hippo4j找bug

1 虚拟机参数不生效 hippo4j的docker启动脚本位于 docker/docker-startup.sh 。从下图可以看到 JAVA_OPT放在了jar包名 hippo4j-server.jar之后&#xff0c;而只有项目参数才放在jar包名之后。 实际上这里JAVA_OPT中包含虚拟机参数&#xff0c;而虚拟机参数要放在jar包名之前…

前端之HTML语言(持续更新)

前端之HTML语言 学习完后端的各种层之后&#xff0c;今天开始学习前端&#xff0c;前端和后端都是一个项目的组成部分。 前端对应得到语言是HTML&#xff0c;HTML最重要的有三块&#xff0c;行为&#xff0c;样式&#xff0c;J结构。行为就是交互&#xff0c;理解为鼠标的点击…

【多模态】34、LLaVA-v1.5 | 微软开源,用极简框架来实现高效的多模态 LMM 模型

文章目录 一、背景二、方法2.1 提升点2.2 训练样本 三、效果3.1 整体效果对比3.2 模型对于 zero-shot 形式的指令的结果生成能力3.3 模型对于 zero-shot 多语言的能力3.4 限制 四、训练4.1 数据4.2 超参 五、代码 论文&#xff1a;Improved Baselines with Visual Instruction …

Xcode下载安装

1.Xcode可用版本判断&#xff1a; 2.Xcode下载安装&#xff1a; 方案1:AppStore 下载更新 若方案1失败则 方案2:指定版本Xcode包下载解压安装 苹果下载 3.Xcode命令行工具插件安装 xcode-select --install 备注&#xff1a; xcode_x.x.x.xip(压缩包存在时效性(使用前24h/…

20 VUE学习:插件

介绍 插件 (Plugins) 是一种能为 Vue 添加全局功能的工具代码。下面是如何安装一个插件的示例&#xff1a; import { createApp } from vueconst app createApp({})app.use(myPlugin, {/* 可选的选项 */ })一个插件可以是一个拥有 install() 方法的对象&#xff0c;也可以直接…

计算一个3x3矩阵对角线和其它两条线的元素之和

计算一个3x3矩阵对角线和其它两条线的元素之和 #include <stdio.h> int main () { int d0,b0,s,i,j; int a[3][3]{1,2,3,4,5,6,7,8,9}; for(i0,j2;i<3;i,j--) dda[i][i]a[i][j]; for(i0,j0;i<3;) {bba[i][j]a[i][j2]; ii2;} sdb; printf("d%d\nb%d\ns%d\n&qu…

支付宝支付(沙盒支付)

后端页面代码 Controller RequestMapping("/pay") public class PayController {private String orderId;Autowiredprivate OrdersService ordersService;Value("${appId}")private String appId;Value("${privateKey}")private String private…