【机器学习】机器学习在深度学习领域中的作用:半监督学习的视角

👀时空之门👀

  • 🔍引言
  • 🎈半监督学习概述
  • 🚝机器学习在深度学习领域中的作用
    • ☘特征提取与表示学习
    • 🍀复杂任务建模
    • ❀结合半监督学习提升性能
  • 🚀半监督学习在深度学习中的应用场景
    • 📕图像识别与计算机视觉
    • 🐱自然语言处理
  • 💖半监督学习的未来与发展


在这里插入图片描述

🔍引言

随着信息技术的飞速发展,机器学习已经成为人工智能领域中的关键技术之一。在机器学习的众多分支中,深度学习以其强大的特征表示能力和高效的计算模型,成为解决复杂问题的有力工具。然而,在实际应用中,标注数据的获取往往成本高昂且耗时,这限制了深度学习模型的训练和应用。因此,如何在有限标注数据的情况下提高深度学习模型的性能,成为了一个重要的研究问题。半监督学习作为一种介于监督学习和非监督学习之间的方法,为解决这一问题提供了新的思路。本文将从半监督学习的视角出发,探讨机器学习在深度学习领域中的作用,分析其基本原理、应用场景以及面临的挑战,并通过代码示例展示半监督学习的实际应用。

🎈半监督学习概述

半监督学习是一种结合了监督学习和非监督学习的机器学习技术,旨在利用少量标注数据和大量未标注数据来提高学习器的性能。在实际应用中,标注数据的获取往往需要人工参与,成本高昂且耗时。而大量的未标注数据则相对容易获取,但难以直接用于监督学习。半监督学习通过利用未标注数据中的信息,辅助标注数据进行模型训练,从而提高了模型的泛化能力和准确性。

半监督学习的方法主要包括自训练(Self-training)、生成模型(Generative Models)、图模型(Graph-based Models)和协同训练(Co-training)等。这些方法各有特点,适用于不同的应用场景。其中,自训练方法通过迭代地利用模型对未标注数据进行预测和标注,逐步扩大标注数据集;生成模型方法则通过假设数据服从某种分布,利用未标注数据估计分布参数,进而对标注数据进行建模;图模型方法则利用数据之间的相似性关系构建图结构,通过图上的信息传播来辅助标注数据进行模型训练;协同训练方法则通过训练多个分类器,利用分类器之间的差异性来辅助标注数据进行模型训练。

在这里插入图片描述

🚝机器学习在深度学习领域中的作用

☘特征提取与表示学习

深度学习以其强大的特征提取和表示学习能力,在机器学习领域发挥着重要作用。在半监督学习中,深度学习模型同样可以利用其层次化的特征提取方式,从标注数据和未标注数据中提取出更加丰富的特征表示。这些特征表示不仅可以用于提高模型的分类性能,还可以用于其他相关任务,如聚类、降维等。

🍀复杂任务建模

深度学习模型具有强大的建模能力,可以处理更加复杂的数据和任务。在半监督学习中,深度学习模型可以利用未标注数据中的信息,辅助标注数据进行模型训练,从而实现对复杂任务的建模。例如,在图像识别领域,深度学习模型可以通过卷积神经网络(CNN)自动学习到图像中的局部特征和空间结构信息;在自然语言处理领域,深度学习模型可以通过循环神经网络(RNN)或Transformer等结构学习到文本中的序列依赖关系和语义信息。这些复杂的任务建模能力使得深度学习在各个领域都取得了显著的成果。

❀结合半监督学习提升性能

在半监督学习中,深度学习模型可以通过以下方式提升性能:

  • 利用未标注数据扩大训练集:深度学习模型通常需要大量的标注数据进行训练。然而,在实际应用中,标注数据的获取往往成本高昂且耗时。半监督学习可以通过利用未标注数据来扩大训练集,从而提高模型的泛化能力和准确性。例如,可以使用自训练方法将未标注数据作为模型的输入,利用模型的预测结果作为标注数据来扩大训练集。

  • 利用未标注数据辅助标注数据进行训练:在半监督学习中,标注数据和未标注数据往往具有相似的分布。因此,可以利用未标注数据中的信息来辅助标注数据进行模型训练。例如,可以使用生成模型方法假设数据服从某种分布,利用未标注数据估计分布参数,进而对标注数据进行建模;或者使用图模型方法利用数据之间的相似性关系构建图结构,通过图上的信息传播来辅助标注数据进行模型训练。

  • 结合多种半监督学习方法:不同的半监督学习方法各有特点,适用于不同的应用场景。因此,可以结合多种半监督学习方法来提高深度学习模型的性能。例如,可以同时使用自训练方法和协同训练方法,通过迭代地利用模型对未标注数据进行预测和标注,以及利用多个分类器之间的差异性来辅助标注数据进行模型训练。

在这里插入图片描述

🚀半监督学习在深度学习中的应用场景

📕图像识别与计算机视觉

在图像识别领域,半监督学习可以通过利用未标注图像中的信息来辅助标注图像进行模型训练。例如,可以使用自训练方法将未标注图像作为模型的输入,利用模型的预测结果作为标注数据来扩大训练集;或者使用图模型方法利用图像之间的相似性关系构建图结构,通过图上的信息传播来辅助标注图像进行模型训练。这些方法可以提高深度学习模型在图像识别任务中的性能。

图像识别与计算机视觉:自训练方法

在图像识别任务中,我们可以使用自训练方法(Self-training)来利用未标注的图像数据辅助标注数据进行深度学习模型的训练。自训练方法的基本思想是先使用有限的标注数据训练一个初始模型,然后用这个模型对未标注数据进行预测,将预测结果置信度较高的样本加入到训练集中,再重新训练模型。这样迭代进行,逐步扩大训练集,提高模型的性能。

以下是一个使用Keras实现的自训练方法代码示例:

import keras  
from keras.datasets import cifar10  
from keras.models import Sequential  
from keras.layers import Dense, Dropout, Flatten  
from keras.layers import Conv2D, MaxPooling2D  
from keras.utils import to_categorical  
from sklearn.model_selection import train_test_split  # 加载CIFAR-10数据集  
(x_train_full, y_train_full), (x_test, y_test) = cifar10.load_data()  # 假设我们只有少量标注数据  
n_labeled = 1000  
x_train, y_train = x_train_full[:n_labeled], y_train_full[:n_labeled]  
y_train = to_categorical(y_train, 10)  # 剩余数据作为未标注数据  
x_unlabeled = x_train_full[n_labeled:]  # 初始模型  
model = Sequential()  
model.add(Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=(32, 32, 3)))  
model.add(MaxPooling2D(pool_size=(2, 2)))  
model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))  
model.add(MaxPooling2D(pool_size=(2, 2)))  
model.add(Flatten())  
model.add(Dense(512, activation='relu'))  
model.add(Dropout(0.5))  
model.add(Dense(10, activation='softmax'))  # 编译模型  
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])  # 初始训练  
model.fit(x_train, y_train, epochs=10, batch_size=64)  # 自训练迭代  
n_iterations = 5  
for iteration in range(n_iterations):  # 使用当前模型对未标注数据进行预测  predictions = model.predict(x_unlabeled)  # 选择置信度较高的样本(例如,选择预测概率最高的类别概率大于某个阈值的样本)  # 这里简单起见,我们假设选择预测概率最高的前100个样本  confidence_scores = predictions.max(axis=1)  top_indices = confidence_scores.argsort()[-100:][::-1]  x_new_labeled = x_unlabeled[top_indices]  y_new_labeled = predictions[top_indices].argmax(axis=1)  y_new_labeled = to_categorical(y_new_labeled, 10)  # 扩大训练集  x_train = np.concatenate((x_train, x_new_labeled), axis=0)  y_train = np.concatenate((y_train, y_new_labeled), axis=0)  # 重新训练模型  model.fit(x_train, y_train, epochs=10, batch_size=64)  # 最终模型在测试集上的评估  
loss, accuracy = model.evaluate(x_test, to_categorical(y_test, 10))  
print(f'Test loss: {loss}, Test accuracy: {accuracy}')

注意:上述代码示例为了简化,直接使用了CIFAR-10数据集的一部分作为未标注数据,实际应用中可能需要根据具体情况来获取未标注数据。

🐱自然语言处理

在自然语言处理领域,半监督学习同样具有广泛的应用。例如,在文本分类任务中,可以使用协同训练方法训练多个分类器,利用分类器之间的差异性来辅助标注文本进行模型训练;或者在命名实体识别任务中,可以使用生成模型方法假设文本数据

自然语言处理:协同训练方法

在自然语言处理任务中,协同训练方法(Co-training)可以利用多个不同的特征视图(例如,词语、词性、句法结构等)来训练多个分类器,并通过这些分类器之间的差异性来辅助标注数据进行模型训练。以下是一个简化的协同训练方法代码示例:

from sklearn.datasets import fetch_20newsgroups  
from sklearn.model_selection import train_test_split  
from sklearn.feature_extraction.text import Tfidf

在这里插入图片描述

💖半监督学习的未来与发展

  • 理论与算法的创新:随着研究的深入,半监督学习的理论与算法将不断得到创新和完善。这将进一步提高半监督学习的性能和应用范围。
  • 应用领域的拓展:随着技术的不断进步,半监督学习将在更多领域得到应用。例如,在医疗健康、金融、自动驾驶等领域,半监督学习将发挥重要作用。
  • 与其他技术的融合:半监督学习将与其他技术如强化学习、迁移学习等进行融合,形成更加先进的人工智能技术。这将进一步推动人工智能技术的发展和应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/340400.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

你每天都在用的APP,原来都是Python写的!

👆点击关注 获取更多编程干货👆 要说Python的用途,那可太多了,也许你不知道Python是什么,但你一定用过它开发的产品,就像你可能不了解汽车引擎的构造,但你每天都享受着汽车带来的便利一样。 比…

【ARM+Codesys案例】树莓派+Codesys软PLC方案在包装行业灌装旋盖机的应用

ARM系列支持:全志T3、RK3568、树莓派 机型定义:双工位旋盖机 旋盖机主要适用于不同规格的材质及不同规格的盖、旋(轧)盖。适用螺旋盖、防盗盖、防撞盖、压入盖等。压力可方便调整,根据瓶盖大小设置取盖位。结构紧凑、…

pdf拆分成有图和无图的pdf(方便打印)

pdf拆分成有图和无图的pdf(方便打印) 原因 打印图片要彩印,每次都要手动弄,打印的时候很麻烦; 随着打印次数的增加,时间就越来越多 为解决此问题,使用python写一个exe解决这个问题 历程 找一个python的GUI界面找到 t…

GPT注册、手机验证码、侧边栏、翻译、绘图和视频的安装与使用

侧边栏 下面这个侧边栏收费 效果不错 ## chrome自动翻译 沉浸式翻译效果最好,支持视频 沉浸式翻译 微软网页 https://designer.microsoft.com/image-creator https://www.yeschat.ai/zh-CN/assistants 字节AI网页 https://www.coze.com/store GPT注册 https:…

qt+ffmpeg 实现音视频播放(四)之音视频同步

在处理音视频数据时,解码音频的数据往往会比解码视频的数据比较慢,所以我们在播放音视频时,音频和视频的数据会出现渐渐对不上的情况。尤其在播放时间越长的时候,这种对不上的现象越明显。 为了解决这一问题,人们想出…

数据挖掘综合案例-家用热水器用户行为分析与事件识别

文章目录 1. 背景与挖掘目标2. 分析方法与过程3. 数据分析3.1 数据探索分析3. 2 数据预处理1. 属性约束2. 划分用水事件3. 确定单次用水事件时长阈值4. 属性构造5.筛选候选洗浴事件 3.3 模型构建3.4 模型检验 4. 思考总结 1. 背景与挖掘目标 随着国内大家电品牌的进入和国外品…

探索大模型技术及其前沿应用——TextIn文档解析技术

前言 中国图象图形大会(CCIG 2024)于近期在西安召开,此次大会将面向开放创新、交叉融合的发展趋势,为图像图形相关领域的专家学者和产业界同仁,搭建一个展示创新成果、展望未来发展,集高度、深度、广度三位…

Django 传递额外参数给视图函数

本书1-7章样章及配套资源下载链接: https://pan.baidu.com/s/1OGmhHxEMf2ZdozkUnDkAkA?pwdnanc 源码、PPT课件、教学视频等,可以从前言给出的下载信息下载,大家可以评估一下。 在Django框架中,URLconf模块还支持一种传递额外参数给视图函…

【前端Vue3】——JQuery知识点总结(超详细)

🎼个人主页:【Y小夜】 😎作者简介:一位双非学校的大二学生,编程爱好者, 专注于基础和实战分享,欢迎私信咨询! 🎆入门知识专栏:🎇【MySQL&#…

IDEA一键启动多个微服务

我们在做微服务项目开发的时候,每次刚打开IDEA,就需要把各个服务一个个依次启动,特别是服务比较多时,逐个点击不仅麻烦还费时。下面来说一下如何一键启动多个微服务。 操作步骤 点击Edit Configurations 2.点击“”,…

华为S5700交换机版本升级步骤

在用一台华为交换机。由于需要做目的镜像接口,在配置过程中超过一个双向流量观察口就会报错。从官方文档查到可以升级版本解决。记录一下升级过程。 首先确定设备型号S5700-28C-EI,系统版本: VRP (R) software, Version 5.150 (S5700 V200R00…

数学建模 —— 层次分析法(2)

目录 一、层次分析法(AHP) 二、构造比较判断矩阵 2.1 两两比较法 三、单准则下的排序及一致检验 3.1 单准则下的排序 3.2 一致性检验 四、层次总排序 4.1 层次总排序的步骤 4.2 总排序一致性检验 一、层次分析法(AHP) 方…

Nginx 1.26.0 爆 HTTP/3 QUIC 漏洞,建议升级更新到 1.27.0

据悉,Nginx 1.25.0-1.26.0 主线版本中涉及四个与 NGINX HTTP/3 QUIC 模块相关的中级数据面 CVE 漏洞,其中三个为 DoS 攻击类型风险,一个为随机信息泄漏风险,影响皆为允许未经身份认证的用户通过构造请求实施攻击。目前已经紧急发布…

Solidworks 提取模型中的零件,并组合成一个新的零件,放入特征库

对方发来一个STP文件,其中有模型的部分零件想为我所用。 Shift键鼠标左键 选取需要的零件 在选好零件上右键,选择“孤立” 左边找到部件,ctrl左键选中,选择“插入到新零件” 点 绿色 勾 就选择保存类型,完成 。 打开这…

python入门3

文章目录 前言一、函数为什么要使用函数?函数定义函数定义和调用定义函数返回值定义空函数函数参数传递传递实参位置实参关键词实参默认值实参等效函数调用实参可选传递任意数量的实参任意数量关键字实参任意参数*与** 的区别使用元组和字典传参如果既有实参又有任意…

liunx配置网络的命令

liunx配置网络的命令 文章目录 liunx配置网络的命令ifconfig命令查看路由表信息netstat命令ss命令lsof命令ping 命令nslookup命令 ifconfig命令 ifconfig:显示正在工作的网卡&#xff0c;启动的设备 ifconfig -a 展示所有设备 ens33: flags4163<UP,BROADCAST,RUNNING,MUL…

教育小程序的性能优化:从前端到后端的综合提升策略

随着教育小程序的普及&#xff0c;其性能直接影响用户体验和教学效果。本文将从前端到后端&#xff0c;详细探讨教育小程序的性能优化策略&#xff0c;帮助开发者打造高效、流畅的教育应用。 一、前端性能优化策略 代码优化 减少HTTP请求&#xff1a;合并CSS、JavaScript文件…

工业相机识别电路板元器件:彩色与黑白的区别

工业相机用于识别电路板上的元器件时&#xff0c;选择彩色相机或黑白相机取决于具体应用需求和条件。彩色相机能提供更丰富的信息&#xff0c;但处理复杂度较高&#xff1b;黑白相机则在处理速度和精度上具有优势。理解它们的区别和各自的优缺点&#xff0c;有助于在具体项目中…

docker安装ubtuntu

☆ 问题描述 纯新手在docker desktop 中安装ubuntu ★ 解决方案 1. 拉取镜像 docker pull ubuntu2.查看镜像是否拉取成功 docker images3. 运行容器 docker run -itd --name <容器名称> ubuntu4. 通过 exec 命令进入 ubuntu 容器 docker exec -it <容器名>…

MyBatis3.4全集笔记

MyBatis 1. MyBatis 简介 MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google code&#xff0c;并且改名为MyBatis 。2013年11月迁移到Github。 iBATIS一词来源于“internet”和“abatis”的组合&#xff0c;是一个基于Ja…