【python】OpenCV—Blob Detection(11)

在这里插入图片描述

学习来自OpenCV基础(10)使用OpenCV进行Blob检测

文章目录

  • 1、cv2.SimpleBlobDetector_create 中文文档
  • 2、默认 parameters
  • 3、配置 parameters
  • 附录——cv2.drawKeypoints

1、cv2.SimpleBlobDetector_create 中文文档

cv2.SimpleBlobDetector_create 是 OpenCV 库中用于创建斑点检测器(Blob Detector)的函数。斑点检测是计算机视觉中的一个重要任务,用于检测图像中的小而明亮的区域,通常称为斑点或斑块。下面是 cv2.SimpleBlobDetector_create 函数的中文文档,包括其参数和用法:

一、函数概述
cv2.SimpleBlobDetector_create([params])

  • 功能:创建一个 SimpleBlobDetector 对象,用于在图像中检测斑点。
  • 参数:
    params(可选):一个 SimpleBlobDetector_Params 对象,用于设置斑点检测器的参数。如果未提供,则使用默认参数。

二、参数详解

SimpleBlobDetector_Params 对象包含以下参数,用于调整斑点检测器的行为:

阈值相关参数:

  • minThreshold:用于阈值处理的最小值。
  • maxThreshold:用于阈值处理的最大值。
  • thresholdStep:在 minThreshold 和 maxThreshold 之间递增的步长。

Blob大小参数:

  • filterByArea:是否按斑点面积过滤斑点。
  • minArea:用于过滤的最小斑点面积
  • maxArea:用于过滤的最大斑点面积

Blob形状参数:

  • filterByCircularity:是否按斑点圆度过滤斑点。
  • minCircularity:用于过滤的最小圆度值(范围从0到1,其中1表示完美的圆)。
  • maxCircularity:用于过滤的最大圆度值。

Blob凸性参数:

  • filterByConvexity:是否按斑点凸性过滤斑点。
  • minConvexity:用于过滤的最小凸性值(范围从0到1,其中1表示完全凸的斑点)。

Blob惯性比参数:(它衡量的是一个形状的伸长程度

  • filterByInertia:是否按斑点惯性比过滤斑点。
  • minInertiaRatio:用于过滤的最小惯性比值(范围从0到1)。

其他参数:

  • minRepeatability:斑点检测的最小重复次数(用于去除噪声)。
  • minDistBetweenBlobs:斑点之间的最小距离(用于去除重叠的斑点)。

在这里插入图片描述

2、默认 parameters

import cv2
import numpy as npim = cv2.imread("C://Users/Administrator/Desktop/1.jpg", cv2.IMREAD_GRAYSCALE)ver = (cv2.__version__).split('.')
print(ver)  # ['4', '4', '0']if int(ver[0]) < 3:detector = cv2.SimpleBlobDetector()
else:detector = cv2.SimpleBlobDetector_create()# 检测blobs
keypoints = detector.detect(im)# 用红色圆圈画出检测到的blobs
im_with_keypoints = cv2.drawKeypoints(im, keypoints, np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)# 结果显示
cv2.imshow("Keypoints", im_with_keypoints)
cv2.waitKey(0)
cv2.destroyAllWindows()

输入图像

请添加图片描述
输出图像

在这里插入图片描述

3、配置 parameters

import cv2
import numpy as npim = cv2.imread("C://Users/Administrator/Desktop/3.jpg", cv2.IMREAD_GRAYSCALE)# 设置SimpleBlobDetector参数
params = cv2.SimpleBlobDetector_Params()# 改变阈值
params.minThreshold = 10
params.maxThreshold = 200# 根据面积过滤
params.filterByArea = True
params.minArea = 1500# 根据Circularity过滤
params.filterByCircularity = True
params.minCircularity = 0.1# 根据Convexity过滤
params.filterByConvexity = True
params.minConvexity = 0.87# 根据Inertia过滤
params.filterByInertia = True
params.minInertiaRatio = 0.01# 创建一个带有参数的检测器
ver = (cv2.__version__).split('.')
if int(ver[0]) < 3:detector = cv2.SimpleBlobDetector(params)
else:detector = cv2.SimpleBlobDetector_create(params)# 检测blobs
keypoints = detector.detect(im)# 用红色圆圈画出检测到的blobs
im_with_keypoints = cv2.drawKeypoints(im, keypoints, np.array([]), (0, 0, 255),cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)# 结果显示
cv2.imshow("Keypoints", im_with_keypoints)
cv2.waitKey(0)

输入图片
在这里插入图片描述

输出图片

在这里插入图片描述

附录——cv2.drawKeypoints

函数定义

  • cv2.drawKeypoints(image, keypoints, outImage[, color[, flags]])

参数

  • image:原始图片,数据类型应为 8-bit 单通道或三通道图像。

  • keypoints:关键点列表,通常是由特征点检测算法(如 SIFT、SURF、ORB 等)生成。

  • outImage:输出图像,绘制关键点后的图像将保存在这个变量中。可以设置为原始图像,以在原始图像上直接绘制关键点。

  • color:颜色设置,用于绘制关键点的颜色。它是一个包含三个整数值的元组,分别代表蓝色、绿色和红色的强度,取值范围在 0-255 之间。例如,(255, 0, 0) 表示红色。

  • flags:绘图功能的标识设置,用于控制关键点的绘制方式。它是一个可选参数,可以设置为以下值之一或它们的组合(通过按位或运算 |):

    • cv2.DRAW_MATCHES_FLAGS_DEFAULT:创建输出图像矩阵,使用现存的输出图像绘制匹配对和特征点,对每一个关键点只绘制中间点。
    • cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG:不创建输出图像矩阵,而是在输出图像上绘制匹配对。
    • cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS:对每一个特征点绘制带大小和方向的关键点图形。
    • cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS:单点的特征点不被绘制。
  • 返回值
    该函数没有直接的返回值,但会将绘制了关键点的图像保存在 outImage 参数中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/344311.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于使用南墙waf防护halo网站主页请求404报错的解决方案

文章目录 环境说明问题展示原因探究解决方法 环境说明 在1panel应用商店&#xff0c;部署南墙waf(docker版)halo(2.16.1社区版)注意部署过程中注意uuwaf必须勾选允许外部访问&#xff0c;halo可以不勾选[这里为了证明确实是南墙waf的原因&#xff0c;选择勾选] 问题展示 使…

ChatGPT-4o体验demo

OpenAI 最近推出了其最新的人工智能语言模型——GPT-4O。该模型是在原有 GPT-4 的基础上进行优化而成&#xff0c;旨在提升生成质量和响应速度。GPT-4O 采用了更加高效的架构设计&#xff0c;使其在处理复杂文本时表现出更快的速度和更高的准确性。GPT-4O 在训练过程中融入了最…

3D打印随形水路:模具水路的革命性技术

在快速发展的模具制造行业中&#xff0c;3D打印技术以其独特的优势正在引领一场技术革命。其中&#xff0c;3D打印随形水路技术&#xff0c;凭借其灵活性和定制化设计的能力&#xff0c;为模具带来了前所未有的变革。 模具3D打印随形水路技术&#xff0c;是一种利用3D打印技术制…

【RISC-V】站在巨人的肩膀上——看开源芯片、软件生态、与先进计算/人工智能/安全的结合

目录 会议议程前言开源处理器芯片的机遇与挑战&#xff0c;孙凝晖&#xff0c;中国工程院院士RISC-V原生基础软件栈&#xff0c;武延军&#xff0c;中国科学院软件研究所RISC-V推动新型架构创新&#xff0c;孟建熠&#xff0c;浙江大学 专题一&#xff1a;开源芯片开源高性能 R…

Vue3【十二】09Computed计算属性

Vue3【十二】09Computed计算属性 计算属性 获取全名 这种方式是只读的不能修改 这样定义fullName是一个计算属性&#xff0c;可读可写 案例截图 目录结构 代码 Person.vue <template><div class"person"><h1>我是 Person 组件</h1>姓&…

Spring异步任务@Async的默认线程池执行器是如何初始化的

Spring异步任务Async的默认线程池执行器&#xff0c;是从哪里来&#xff1f;是如何初始化的&#xff1f; 结论先行 异步任务Async的默认线程池执行器是通过TaskExecutionAutoConfiguration#applicationTaskExecutor自动注入的。 异步任务的线程池执行器是如何初始化的&#…

线性表和链表

一&#xff0c;线性结构 1.Array Array文档&#xff1a;可以自行阅读相关文档来了解Array class array.array(typecode[, initializer]) array.append(x)&#xff1a;添加元素到数组末尾 array.count(x)&#xff1a;计算元素出现次数 array.extend(iterable)&#xff1a;将迭代…

go语言实战--基于Vue3+gin框架的实战Cetide网项目(讲解开发过程中的各种踩坑)

最近被要求学习go语言开发&#xff0c;也就做一个项目实战巩固一下&#xff0c;也分享一下关于gin框架的实战项目 &#xff08;后续应该还是会继续学习Java&#xff0c;这一期还是做一个govue的&#xff09; 经过一段时间的开发过后&#xff0c;感觉现在的开发效率要快不少了&…

Javascript全解(基础篇)

语法与数据类型 语法 var\let\const var 声明一个变量&#xff0c;可选初始化一个值。 let 声明一个块作用域的局部变量&#xff0c;可选初始化一个值。 const 声明一个块作用域的只读常量。 用 var 或 let 语句声明的变量&#xff0c;如果没有赋初始值&#xff0c;则其值为 …

技术革命的十年:计算机、互联网、大数据、云计算与AI

近10年来&#xff0c;计算机、互联网、大数据、云计算和人工智能等技术领域发展迅速&#xff0c;带来了巨大的变革和创新。以下是各个领域的发展历史、现状、问题瓶颈、未来趋势以及可能的奇点。 计算机技术&#xff1a; 发展历史&#xff1a; 过去&#xff1a;过去十年间&am…

循环语句大揭秘:while、do-while、for、foreach你都掌握了吗?

哈喽&#xff0c;各位小伙伴们&#xff0c;你们好呀&#xff0c;我是喵手。运营社区&#xff1a;C站/掘金/腾讯云&#xff1b;欢迎大家常来逛逛 今天我要给大家分享一些自己日常学习到的一些知识点&#xff0c;并以文字的形式跟大家一起交流&#xff0c;互相学习&#xff0c;一…

Nextjs学习教程

一.手动创建项目 建议看这个中文网站文档,这个里面的案例配置都是手动的,也可以往下看我这个博客一步步操作 1.在目录下执行下面命令,初始化package.json文件 npm init -y2.安装react相关包以及next包 yarn add next react react-dom // 或者 npm install --save next react…

opera打不开网页最简单的解决办法

如果以上为解决问题&#xff0c;继续下面操作 检查网络连接&#xff1a; 确认您的电脑已连接到互联网。 检查网络连接是否稳定&#xff0c;网络速度慢或链路拥堵可能会导致网页加载失败。 修改Local State文件&#xff1a; 关闭Opera浏览器。 定位到Opera浏览器的配置…

【NI国产替代】PCIe 高速采集卡, 8 位双通道数字化仪器,采集卡最高采样率高达 5 GS/s 模拟带宽高达 500 MHz

• 8 位双通道数字化仪器 • 最高采样率高达 5 GS/s • 模拟带宽高达 500 MHz • 采用 PCIe 3.0 x 8 接口 • 基于 Xilinx Kintex UltraScale, XCKU040 • 提供硬件、FPGA、软件定制服务 高速采集卡是一款 8 位双通道数字化仪器&#xff0c;采集卡最高采样率高达 5 GS/s 模…

客户案例|Zilliz Cloud 助力点石科技转型 AI 智能服务商

福建点石科技网络科技有限公司成立于2010年&#xff0c;是国家高新技术企业&#xff0c;阿里云、蚂蚁金服等大厂海内外生态合作伙伴ISV。在餐饮、零售、酒店、旅游、商圈的行业定制化服务化上有深厚积累&#xff0c;在境内外做了大量标杆性软件项目&#xff0c;如东南亚RWS圣淘…

如何将HTTP升级成HTTPS?既简单又免费的方法!

在当今数字化时代&#xff0c;网络安全已成为用户和企业关注的焦点。HTTPS作为一种更加安全的网络通信协议&#xff0c;正逐渐取代传统的HTTP成为新的标准。对于许多网站管理员和内容创作者来说&#xff0c;如何免费升级到HTTPS是一个值得探讨的问题。本文将详细介绍一些免费的…

【动态规划-BM79 打家劫舍(二)】

题目 BM79 打家劫舍(二) 描述 你是一个经验丰富的小偷&#xff0c;准备偷沿湖的一排房间&#xff0c;每个房间都存有一定的现金&#xff0c;为了防止被发现&#xff0c;你不能偷相邻的两家&#xff0c;即&#xff0c;如果偷了第一家&#xff0c;就不能再偷第二家&#xff0c;如…

数据结构之ArrayList与顺序表(下)

找往期文章包括但不限于本期文章中不懂的知识点&#xff1a; 个人主页&#xff1a;我要学编程(ಥ_ಥ)-CSDN博客 所属专栏&#xff1a;数据结构&#xff08;Java版&#xff09; 目录 ArrayList的具体使用 118. 杨辉三角 扑克洗牌算法 接上篇&#xff1a;数据结构之ArrayLis…

【数据结构】平衡二叉树(AVL树)

目录 前言 一、AVL树概念 二、AVL树节点定义 三、AVL树插入 1. 按照二叉搜索树的方式插入新节点 2. 维护节点的平衡因子与调整树的结构 a. 新节点插入较高左子树的左侧---左左&#xff1a;右单旋 b. 新节点插入较高右子树的右侧---右右&#xff1a;左单旋 c. 新节点插入…

SpeedyBee飞塔F405 V3 50A

遥控器常用的几种协议&#xff1a; 一文打尽PWM协议、PPM协议、PCM协议、SBUS协议、XBUS协议、DSM协议 | STM32的通用定时器TIM3实现PPM信号输出 - 蔡子CaiZi - 博客园 (cnblogs.com) SpeedyBee飞塔的官方教程&#xff1a; FlowUs 息流 - 新一代生产力工具 为8位电调刷写固…