深入探索:十种流行的深度神经网络及其运作原理

在这里插入图片描述

算法

  • 深入探索:十种流行的深度神经网络及其运作原理
    • 一、卷积神经网络(CNN)
      • 基本原理
      • 工作方式
    • 二、循环神经网络(RNN)
      • 基本原理
      • 工作方式
    • 三、长短期记忆网络(LSTM)
      • 基本原理
      • 工作方式
    • 四、门控循环单元(GRU)
      • 基本原理
      • 工作方式
    • 五、生成对抗网络(GAN)
      • 基本原理
      • 工作方式
    • 六、变分自编码器(VAE)
      • 基本原理
      • 工作方式
    • 七、注意力机制(Attention Mechanism)
      • 基本原理
      • 工作方式
    • 八、Transformer
      • 基本原理
      • 工作方式
    • 九、残差网络(ResNet)
      • 基本原理
      • 工作方式
    • 十、U-Net
      • 基本原理
      • 工作方式

深入探索:十种流行的深度神经网络及其运作原理

在人工智能的迅猛发展中,深度神经网络扮演了核心角色。这些网络模型因其出色的特征学习和模式识别能力,在各个领域中都取得了显著的成就。本文将详细介绍目前十种流行的深度神经网络,探讨它们的基本原理和工作方式。

一、卷积神经网络(CNN)

基本原理

卷积神经网络主要用于处理网格化的数据,如图像。它们通过卷积层来提取空间特征,卷积操作可以捕捉局部区域的特征,并通过堆叠多个卷积层来学习从低级到高级的特征。

工作方式

CNN通过滤波器(或称为核)在输入数据上滑动,计算滤波器与输入数据的点乘,生成特征图(feature map)。这个过程可以捕获如边缘、角点等重要的视觉特征。随后,使用池化层(如最大池化)来减少特征维度和提升网络的空间不变性。CNN的这种结构使其在图像识别、视频分析等领域表现出色。

二、循环神经网络(RNN)

基本原理

循环神经网络设计用来处理序列数据,如文本或时间序列。它们可以将信息从一个时间步传递到下一个时间步,从而捕捉数据中的时间动态特征。

工作方式

在RNN中,每个时间步的输出不仅依赖于当前输入,还依赖于前一时间步的输出。网络有一个隐藏状态,该状态包含了过去信息的某种总结,并用于计算当前输出。然而,标准RNN容易遭受梯度消失或梯度爆炸的问题,这限制了它们在长序列中的应用。

三、长短期记忆网络(LSTM)

基本原理

长短期记忆网络是RNN的一种变体,它通过引入三种门控机制(遗忘门、输入门、输出门)来解决标准RNN在处理长序列时的梯度问题。

工作方式

LSTM的每个单元都包括一个细胞状态和三个门控制。细胞状态贯穿整个链条,保持信息的流动,而门控制信息的增加或删除。遗忘门决定哪些信息应被抛弃,输入门控制哪些新信息加入细胞状态,输出门决定基于细胞状态的输出。这种结构使得LSTM能够在更长的序列中有效地学习依赖关系。

四、门控循环单元(GRU)

基本原理

门控循环单元是LSTM的一种简化版本,它将LSTM中的三个门控简化为两个(更新门和重置门),使模型更加高效而不牺牲太多性能。

工作方式

GRU的更新门帮助模型决定在当前状态保留多少旧信息,而重置门决定应忽略多少过去的信息。这种结构简化了参数,减少了计算量,同时保持了对长期依赖的处理能力。

五、生成对抗网络(GAN)

基本原理

生成对抗网络包括两部分:生成器和判别器。生成器生成尽可能逼真的数据,而判别器的任务是区分生成的数据和真实数据。这种对抗过程促使生成器产生高质量的输出。

工作方式

在训练过程中,生成器学习创建数据,判别器学习识别数据是否为真实。生成器的目标是增加判别器犯错误的概率,这个过程形似一个迭代的博弈过程,直至生成器产生的数据以假乱真。

六、变分自编码器(VAE)

基本原理

变分自编码器通过编码器将输入数据压缩成一个潜在空间,并通过解码器重建输入数据。与传统的自编码器不同,VAE在编码器的输出上应用概率分布,提高了模型的生成能力。

工作方式

VAE的编码器部分将输入数据映射到潜在变量的分布参数上,然后从这个分布中采样生成潜在变量,最后解码器根据这些潜在变量重建输入。这种生成的随机性使VAE成为一个强大的生成模型。

七、注意力机制(Attention Mechanism)

基本原理

注意力机制允许模型在处理输入的同时,学习在不同部分放置多少“注意力”,这对于解决NLP中的翻译等问题非常有效。

工作方式

在翻译任务中,注意力机制允许模型在生成每个单词时,聚焦于输入句子的相关部分。这样可以更好地捕捉语境和语义信息,提高翻译质量。

八、Transformer

基本原理

Transformer是一种完全依赖于自注意力机制来处理序列数据的模型。它摒弃了传统的循环层,全部使用注意力层和前馈层。

工作方式

Transformer的核心是自注意力层,它可以并行处理序列中的所有元素,提高了模型的效率和效果。每个元素的输出是其它所有元素经过加权后的总和,权重由元素间的相对关系决定。

九、残差网络(ResNet)

基本原理

残差网络通过引入“跳跃连接”克服了深层网络训练难的问题。这些连接使信号可以直接传播至更深的层。

工作方式

在ResNet中,输入不仅传到下一层,还添加到后面几层的输出上。这种结构使得网络可以训练非常深的网络,提高了性能,防止了训练过程中的梯度消失。

十、U-Net

基本原理

U-Net是一种特别为医学图像分割设计的卷积网络,它的结构呈U形,包括一个收缩路径和一个对称的扩张路径。

工作方式

U-Net的收缩路径捕捉图像内容,扩张路径则允许精确定位。这种结构特别适合处理图像中的小目标,广泛用于医学图像分析领域。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/345145.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用Python创建Word文档

使用Python创建Word文档 安装python-docx库创建Word文档代码效果 在这篇文章中,我们将介绍如何使用 Python创建一个Word文档。首先,我们需要安装python-docx库,然后通过一段简单的代码示例展示如何创建和编辑Word文档。 安装python-docx库 …

C++使用thread_local实现每个线程下的单例

对于一个类,想要在每个线程种有且只有一个实例对象,且线程之间不共享该实例,可以按照单例模式的写法,同时使用C11提供的thread_local关键字实现。 在单例模式的基础上,使用thread_local关键字修饰单例的instance&…

CasaOS玩客云如何部署小雅AList并结合内网穿透远程访问海量资源

文章目录 前言1. 本地部署AList2. AList挂载网盘3. 部署小雅alist3.1 Token获取3.2 部署小雅3.3 挂载小雅alist到AList中 4. Cpolar内网穿透安装5. 创建公网地址6. 配置固定公网地址 前言 本文主要介绍如何在安装了CasaOS的玩客云主机中部署小雅AList,并在AList中挂…

IT闲谈-IMD是什么,有什么优势

目录 一、引言二、IDM是什么?三、IDM的优势1. 高速下载2. 稳定性强3. 强大的任务管理4. 视频下载5. 浏览器整合 四、应用场景1. 商务办公2. 教育学习3. 娱乐休闲 总结 一、引言 在数字化时代,下载管理器已成为我们日常工作和生活中不可或缺的工具。而在…

【CentOS 7】CentOS 7极致指南:高级部署PyCharm 2022.3.3专业版,实现定制化配置与无缝桌面集成

【CentOS 7】CentOS 7极致指南:高级部署PyCharm 2022.3.3专业版,实现定制化配置与无缝桌面集成 大家好 我是寸铁👊 总结了一篇CentOS 7极致指南:高级部署PyCharm 2022.3.3专业版,实现定制化配置与无缝桌面集成✨ 喜欢的…

关于CodeCombat(沙漠)布朗噪声的攻略

关于CodeCombat(沙漠)//布朗噪声的攻略 总的来说怎么猥琐怎么来 1.走到墙角骷髅看不到的位置,让宠物制造噪音,然后英雄走过去,就是这样没错(坐标之类能明白) 最后看看运行结果吧 Rec 0002 希望天天开心

把chatgpt当实习生,进行matlab gui程序编程

最近朋友有个项目需要整点matlab代码,无奈自己对matlab这种工科的软件完全是外行,无奈只有求助gpt这种AI助手了。大神们告诉我们,chatgpt等的助手已经是大学实习生水平啦,通过多轮指令交互就可以让他帮你完成工作啦!所…

如何学习Golang语言!

第一部分:Go语言概述 起源与设计哲学:Go语言由Robert Griesemer、Rob Pike和Ken Thompson三位Google工程师设计,旨在解决现代编程中的一些常见问题,如编译速度、运行效率和并发编程。主要特点:Go语言的语法简单、编译…

Django Forbidden (CSRF cookie not set.)解决办法

解决办法就是在setting.py文件中注释: django.middleware.csrf.CsrfViewMiddleware, 这个中间件是为了防止跨站请求伪造的,平时用网页表单请求时,post提交是没有问题的,但是用api调用时就会被禁止,为了能使用接口调用…

C#发送邮件的SMTP配置方法?如何群发邮件?

C#发送邮件安全性如何保障?C#怎么配置实现发送邮件? 在C#开发中,发送电子邮件是一个常见的需求。无论是用于注册确认、密码重置还是其他通知功能,SMTP(简单邮件传输协议)都是实现这一功能的关键。下面&…

Codeforces Round 949 (Div. 2) A~D

A. Turtle and Piggy Are Playing a Game (思维) 题意: 给出一个整数 x x x ,使得 l ≤ x ≤ r l \le x \le r l≤x≤r ,其中 l , r l, r l,r 为给定值。同时保证 2 l ≤ r 2l \le r 2l≤r 。 执行以下操作&…

【Docker系列】跨平台 Docker 镜像构建:深入理解`--platform`参数

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

!力扣102. 二叉树的层序遍历

给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:[[3],[9,20],[15,7]] /*** Definition for…

计算机网络 ——网络层(IPv4地址)

计算机网络 ——网络层(IPv4地址) 什么是IPv4地址IP地址的分类特殊的IP地址 查看自己的IPv4地址 我们今天来看IPv4地址: 什么是IPv4地址 IPv4(Internet Protocol version 4)是第四版互联网协议,是第一个被…

电调, GPS与飞塔

电调油门行程校准: 断电-----油门推到最高-------电调上电-------滴滴------油门推到最低---滴滴滴---校准完成。 http://【【教程】油门行程校准(航模,电机,电调)】https://www.bilibili.com/video/BV1yJ411J7aX?v…

【JS】理解闭包及其应用

历史小剧场 明朝灭亡,并非是简单的政治问题,事实上,这是世界经济史上的一个重要案例。 所谓没钱,就是没有白银。----《明朝那些事儿》 什么是闭包? 闭包就是指有权访问另一个函数作用域中变量的函数 闭包变量存储位置&…

【深度学习】深度学习之巅:在 CentOS 7 上打造完美Python 3.10 与 PyTorch 2.3.0 环境

【深度学习】深度学习之巅:在 CentOS 7 上打造完美Python 3.10 与 PyTorch 2.3.0 环境 大家好 我是寸铁👊 总结了一篇【深度学习】深度学习之巅:在 CentOS 7 上打造完美Python 3.10 与 PyTorch 2.3.0 环境✨ 喜欢的小伙伴可以点点关注 &#…

有序二叉树java实现

类实现: package 树;import java.util.LinkedList; import java.util.Queue;public class BinaryTree {public TreeNode root;//插入public void insert(int value){//插入成功之后要return结束方法TreeNode node new TreeNode(value);//如果root为空的话插入if(r…

山东大学软件学院项目实训-创新实训-基于大模型的旅游平台(二十七)- 微服务(7)

11.1 : 同步调用的问题 11.2 异步通讯的优缺点 11.3 MQ MQ就是事件驱动架构中的Broker 安装MQ docker run \-e RABBITMQ_DEFAULT_USERxxxx \-e RABBITMQ_DEFAULT_PASSxxxxx \--name mq \--hostname mq1 \-p 15672:15672 \-p 5672:5672 \-d \rabbitmq:3-management 浏览器访问1…

6、组件通信详解(父子、兄弟、祖孙)

一、父传子 1、props 用法: (1)父组件用 props绑定数据,表示为 v-bind:props"数据" (v-bind:简写为 : ,props可以任意命名) (2)子组件用 defineProps([props&…