基于STM32开发的智能农业监控系统

目录

  1. 引言
  2. 环境准备
  3. 智能农业监控系统基础
  4. 代码实现:实现智能农业监控系统
    • 4.1 土壤湿度传感器数据读取
    • 4.2 温湿度传感器数据读取
    • 4.3 水泵与风扇控制
    • 4.4 用户界面与数据可视化
  5. 应用场景:农业环境监测与管理
  6. 问题解决方案与优化
  7. 收尾与总结

1. 引言

随着智能农业技术的发展,农田环境的实时监测和管理变得愈发重要。通过监测和控制农业环境中的关键参数,可以有效提高农作物的产量和质量。本文将详细介绍如何在STM32嵌入式系统中使用C语言实现一个智能农业监控系统,包括环境准备、系统架构、代码实现、应用场景及问题解决方案和优化方法。

2. 环境准备

硬件准备

  • 开发板:STM32F407 Discovery Kit
  • 调试器:ST-LINK V2或板载调试器
  • 土壤湿度传感器:如YL-69
  • 温湿度传感器:如DHT22
  • 水泵:用于灌溉
  • 风扇:用于通风
  • 显示屏:如TFT LCD显示屏
  • 按键或旋钮:用于用户输入和设置
  • 电源:12V或24V电源适配器

软件准备

  • 集成开发环境(IDE):STM32CubeIDE或Keil MDK
  • 调试工具:STM32 ST-LINK Utility或GDB
  • 库和中间件:STM32 HAL库

安装步骤

  1. 下载并安装 STM32CubeMX
  2. 下载并安装 STM32CubeIDE
  3. 配置STM32CubeMX项目并生成STM32CubeIDE项目
  4. 安装必要的库和驱动程序

3. 智能农业监控系统基础

控制系统架构

智能农业监控系统由以下部分组成:

  • 传感器系统:用于检测农田中的土壤湿度和环境温湿度
  • 控制系统:用于控制水泵和风扇
  • 数据监控系统:用于实时监控和分析环境数据
  • 显示系统:用于显示环境参数和系统状态
  • 用户输入系统:通过按键或旋钮进行设置和调整

功能描述

通过土壤湿度传感器和温湿度传感器实时监测农田环境,根据预设的阈值自动控制水泵和风扇的开关状态。同时,通过数据监控系统对环境数据进行实时监控和分析,并将结果显示在显示屏上。用户可以通过按键或旋钮进行设置,并通过显示屏查看当前状态。

4. 代码实现:实现智能农业监控系统

4.1 土壤湿度传感器数据读取

配置YL-69土壤湿度传感器 使用STM32CubeMX配置ADC接口:

打开STM32CubeMX,选择您的STM32开发板型号。 在图形化界面中,找到需要配置的ADC引脚,设置为输入模式。 生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"ADC_HandleTypeDef hadc1;void ADC_Init(void) {__HAL_RCC_ADC1_CLK_ENABLE();ADC_ChannelConfTypeDef sConfig = {0};hadc1.Instance = ADC1;hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;hadc1.Init.Resolution = ADC_RESOLUTION_12B;hadc1.Init.ScanConvMode = DISABLE;hadc1.Init.ContinuousConvMode = ENABLE;hadc1.Init.DiscontinuousConvMode = DISABLE;hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;hadc1.Init.NbrOfConversion = 1;hadc1.Init.DMAContinuousRequests = DISABLE;hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;HAL_ADC_Init(&hadc1);sConfig.Channel = ADC_CHANNEL_0;sConfig.Rank = 1;sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;HAL_ADC_ConfigChannel(&hadc1, &sConfig);
}uint32_t Read_Soil_Moisture(void) {HAL_ADC_Start(&hadc1);HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY);return HAL_ADC_GetValue(&hadc1);
}int main(void) {HAL_Init();SystemClock_Config();ADC_Init();uint32_t soil_moisture;while (1) {soil_moisture = Read_Soil_Moisture();HAL_Delay(1000);}
}

4.2 温湿度传感器数据读取

配置DHT22温湿度传感器 使用STM32CubeMX配置GPIO接口:

打开STM32CubeMX,选择您的STM32开发板型号。 在图形化界面中,找到需要配置的GPIO引脚,设置为输入模式。 生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"
#include "dht22.h"void DHT22_Init(void) {// 初始化DHT22传感器
}void DHT22_Read_Data(float* temperature, float* humidity) {// 读取DHT22传感器的温度和湿度数据
}int main(void) {HAL_Init();SystemClock_Config();DHT22_Init();float temperature, humidity;while (1) {DHT22_Read_Data(&temperature, &humidity);HAL_Delay(2000);}
}

4.3 水泵与风扇控制

配置GPIO控制水泵与风扇 使用STM32CubeMX配置GPIO:

打开STM32CubeMX,选择您的STM32开发板型号。 在图形化界面中,找到需要配置的GPIO引脚,设置为输出模式。 生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"#define PUMP_PIN GPIO_PIN_0
#define FAN_PIN GPIO_PIN_1
#define GPIO_PORT GPIOAvoid GPIO_Init(void) {__HAL_RCC_GPIOA_CLK_ENABLE();GPIO_InitTypeDef GPIO_InitStruct = {0};GPIO_InitStruct.Pin = PUMP_PIN | FAN_PIN;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}void Control_Pump(uint8_t state) {if (state) {HAL_GPIO_WritePin(GPIO_PORT, PUMP_PIN, GPIO_PIN_SET);  // 打开水泵} else {HAL_GPIO_WritePin(GPIO_PORT, PUMP_PIN, GPIO_PIN_RESET);  // 关闭水泵}
}void Control_Fan(uint8_t state) {if (state) {HAL_GPIO_WritePin(GPIO_PORT, FAN_PIN, GPIO_PIN_SET);  // 打开风扇} else {HAL_GPIO_WritePin(GPIO_PORT, FAN_PIN, GPIO_PIN_RESET);  // 关闭风扇}
}int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();uint32_t soil_moisture;float temperature, humidity;while (1) {soil_moisture = Read_Soil_Moisture();DHT22_Read_Data(&temperature, &humidity);if (soil_moisture < 3000) {Control_Pump(1);  // 打开水泵} else {Control_Pump(0);  // 关闭水泵}if (temperature > 30.0) {Control_Fan(1);  // 打开风扇} else {Control_Fan(0);  // 关闭风扇}HAL_Delay(1000);}
}

4.4 用户界面与数据可视化

配置TFT LCD显示屏 使用STM32CubeMX配置SPI接口:

打开STM32CubeMX,选择您的STM32开发板型号。 在图形化界面中,找到需要配置的SPI引脚,设置为SPI模式。 生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"
#include "spi.h"
#include "lcd_tft.h"void Display_Init(void) {LCD_TFT_Init();
}void Display_Soil_Moisture(uint32_t soil_moisture) {char buffer[32];sprintf(buffer, "Soil Moisture: %lu", soil_moisture);LCD_TFT_Print(buffer);
}void Display_Temperature_Humidity(float temperature, float humidity) {char buffer[32];sprintf(buffer, "Temp: %.2f C", temperature);LCD_TFT_Print(buffer);sprintf(buffer, "Humidity: %.2f %%", humidity);LCD_TFT_Print(buffer);
}int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();ADC_Init();DHT22_Init();Display_Init();uint32_t soil_moisture;float temperature, humidity;while (1) {soil_moisture = Read_Soil_Moisture();DHT22_Read_Data(&temperature, &humidity);Display_Soil_Moisture(soil_moisture);Display_Temperature_Humidity(temperature, humidity);if (soil_moisture < 3000) {Control_Pump(1);  // 打开水泵} else {Control_Pump(0);  // 关闭水泵}if (temperature > 30.0) {Control_Fan(1);  // 打开风扇} else {Control_Fan(0);  // 关闭风扇}HAL_Delay(1000);}
}

⬇帮大家整理了单片机的资料

包括stm32的项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多嵌入式详细资料

问题讨论,stm32的资料领取可以私信!

5. 应用场景:农业环境监测与管理

温室大棚管理

智能农业监控系统可应用于温室大棚,通过实时监测土壤湿度和环境温湿度,自动调节灌溉和通风设备,提高作物产量和质量。

露天农田管理

在露天农田中,智能农业监控系统可以帮助农民实时了解土壤湿度和气候变化,及时调整灌溉策略,避免旱涝灾害,提高农田管理的效率和精度。

农业科研实验

在农业科研实验中,智能农业监控系统可以提供准确的环境数据,帮助研究人员分析作物生长情况,优化种植方案,提高科研效率。

6. 问题解决方案与优化

常见问题及解决方案

  1. 传感器数据不准确:确保传感器与STM32的连接稳定,定期校准传感器以获取准确数据。
  2. 设备控制不稳定:检查GPIO配置和电气连接,确保设备控制信号的可靠性。定期检查设备状态,防止由于硬件故障导致的控制失效。
  3. 显示屏显示异常:检查SPI通信线路,确保显示屏与MCU之间的通信正常,避免由于线路问题导致的显示异常。

优化建议

  1. 引入RTOS:通过引入实时操作系统(如FreeRTOS)来管理各个任务,提高系统的实时性和响应速度。
  2. 增加更多传感器:在系统中增加环境监测传感器,如光照传感器、CO2传感器等,提升系统的智能化和环境适应能力。
  3. 优化控制算法:根据实际需求优化控制算法,如模糊控制、PID控制等,提高系统的智能化水平和响应速度。
  4. 数据分析与预测:通过大数据分析和机器学习模型,对历史数据进行分析,预测环境变化趋势,优化控制策略。
  5. 增强网络通信能力:集成WiFi或以太网模块,实现系统的远程监控和控制,提升系统的灵活性和便利性。

7. 收尾与总结

本教程详细介绍了如何在STM32嵌入式系统中实现智能农业监控系统,包括土壤湿度传感器数据读取、温湿度传感器数据读取、水泵与风扇控制、用户界面与数据可视化等内容。通过合理的硬件选择和精确的软件实现,可以构建一个稳定且功能强大的智能农业监控系统。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/346259.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Apache ShardingSphere实战与核心源码剖析

Apache ShardingSphere实战与核心源码剖析 1.数据库架构演变与分库分表介绍 1.1 海量数据存储问题及解决方案 如今随着互联网的发展,数据的量级也是成指数的增长,从GB到TB到PB。对数据的各种操作也是愈加的困难,传统的关系性数据库已经无法满足快速查询与插入数据的需求。…

msvcp140_CODECVT_IDS.dll的解决方法是什么?有多少种解决方法

msvcp140_CODECVT_IDS.dll 是一个动态链接库&#xff08;DLL&#xff09;文件&#xff0c;属于微软Visual C 2015运行时库的一部分。这个文件主要负责字符编码转换&#xff0c;支持Unicode与其他字符集之间的转换&#xff0c;如UTF-8与UTF-16。它对于运行时库的多语言支持至关重…

Golang | Leetcode Golang题解之第133题克隆图

题目&#xff1a; 题解&#xff1a; func cloneGraph(node *Node) *Node {if node nil {return node}visited : map[*Node]*Node{}// 将题目给定的节点添加到队列queue : []*Node{node}// 克隆第一个节点并存储到哈希表中visited[node] &Node{node.Val, []*Node{}}// 广…

算法题目学习汇总

1、二叉树前中后序遍历:https://blog.csdn.net/cm15835106905/article/details/124699173 2、输入一棵二叉搜索树&#xff0c;将该二叉搜索树转换成一个排序的双向链表。要求不能创建任何新的结点&#xff0c;只能调整树中结点指针的指向。 public class Solution {private Tr…

网络学习(二)DNS域名解析原理、DNS记录

目录 一、为什么要使用DNS&#xff1f;二、因特网的域名结构三、DNS域名解析原理【含详细图解】四、DNS记录&#xff08;A记录、AAAA记录、CNAME记录等&#xff09; 一、为什么要使用DNS&#xff1f; 我们知道&#xff0c;TCP/IP 协议中是使用 IP 地址和端口号来确定网络上的某…

优质免费的 5 款翻译 API 接口推荐

当谈到翻译API时&#xff0c;我们通常指的是一种编程接口&#xff0c;它允许开发者将文本从一种语言翻译成另一种语言。这些API通常由专业的翻译服务提供商提供&#xff0c;如谷歌翻译 API、实时翻译API、腾讯翻译API、DeepL翻译API、Azure翻译API等。 这些API通常提供多种语言…

day31贪心算法part01| 理论基础 455.分发饼干 376. 摆动序列 53. 最大子序和

**455.分发饼干 ** 视频讲解 | 力扣链接刚开始想到的&#xff0c;但是这样太暴力了&#xff0c;太笨了 class Solution { public:int findContentChildren(vector<int>& g, vector<int>& s) {// 胃口g 饼干尺寸sint result 0;sort(s.begin(), s.end());…

[数据集][目标检测]厨房积水检测数据集VOC+YOLO格式88张2类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;88 标注数量(xml文件个数)&#xff1a;88 标注数量(txt文件个数)&#xff1a;88 标注类别数…

冯喜运:6.11#现货黄金#美原油#行情趋势分析及操作建议

【黄金消息面分析】&#xff1a;随着全球经济的波动&#xff0c;黄金作为传统的避险资产&#xff0c;其价格走势一直备受投资者关注。上周五&#xff0c;美国非农就业报告的强劲表现给美联储降息预期泼了冷水&#xff0c;同时&#xff0c;中国5月份未增持黄金&#xff0c;结束了…

免费,C++蓝桥杯等级考试真题--第11级(含答案解析和代码)

C蓝桥杯等级考试真题--第11级 答案&#xff1a;D 解析&#xff1a; A. a b; b a; 这种方式会导致a和b最终都等于b原来的值&#xff0c;因为a的原始值在被b覆盖前没有保存。 B. swap(a&#xff0c;b); 如果没有自定义swap函数或者没有包含相应的库&#xff0c;这个选项会编…

技术前沿 |【大模型InstructBLIP进行指令微调】

大模型InstructBLIP进行指令微调 一、引言二、InstructBLIP模型介绍三、指令微调训练通用视觉语言模型的应用潜力四、InstructBLIP的指令微调训练步骤五、实验结果与讨论六、结论与展望 一、引言 随着人工智能技术的快速发展&#xff0c;视觉语言模型&#xff08;Vision-Langu…

SpringMVC[从零开始]

SpringMVC SpringMVC简介 1.1什么是MVC MVC是一种软件架构的思想&#xff0c;将软件按照模型、视图、控制器来划分 M:Model&#xff0c;模型层&#xff0c;指工程中的JavaBean&#xff0c;作用是处理数据 JavaBean分为两类&#xff1a; 一类称为实体类Bean&#xff1a;专…

Python数据分析II

目录 1.HS-排序返回前n行 2.HS-相关性 3.缺失值处理 4.时间 5.时间索引 6.分组聚合 7.离散分箱 8.Concat关联(索引关联) 9.Merge关联(字段关联) 10.join合并(左字段,右索引) 11.行列转置及透视表 12.数据可视化-面向过程 13.数据可视化-面向对象 14.快速生成柱状…

设计模式 —— 观察者模式

设计模式 —— 观察者模式 什么是观察者模式观察者模式定义观察者模式的角色观察者模式的使用场景观察者模式的实现 被观察者&#xff08;Subject&#xff09;观察者&#xff08;Observer&#xff09;通知&#xff08;notify&#xff09;更新显示&#xff08;update&#xff09…

Apache Pulsar 从入门到精通

一、快速入门 Pulsar 是一个分布式发布-订阅消息平台&#xff0c;具有非常灵活的消息模型和直观的客户端 API。 最初由 Yahoo 开发&#xff0c;在 2016 年开源&#xff0c;并于2018年9月毕业成为 Apache 基金会的顶级项目。Pulsar 已经在 Yahoo 的生产环境使用了三年多&#…

26-LINUX--I/O复用-select

一.I/O复用概述 /O复用使得多个程序能够同时监听多个文件描述符&#xff0c;对提高程序的性能有很大帮助。以下情况适用于I/O复用技术&#xff1a; ◼ TCP 服务器同时要处理监听套接字和连接套接字。 ◼ 服务器要同时处理 TCP 请求和 UDP 请求。 ◼ 程序要同时处理多个套接…

Python 连接 MySQL 及 SQL增删改查(主要使用sqlalchemy)

目录 一、环境 二、MySQL的连接和使用 2.1方式一&#xff1a;sql为主 2.1.1创建连接 2.1.2 表结构 2.1.3 新增数据 ​编辑 2.1.4 查看数据 ​编辑 2.1.5 修改数据 2.1.6 删除数据 2.2方式二&#xff1a;orm对象关系映射 2.2.1 mysql连接 2.2.2 创建表 2.2.3 新增…

关于 Redis 中集群

哨兵机制中总结到&#xff0c;它并不能解决存储容量不够的问题&#xff0c;但是集群能。 广义的集群&#xff1a;只要有多个机器&#xff0c;构成了分布式系统&#xff0c;都可以称之为一个“集群”&#xff0c;例如主从结构中的哨兵模式。 狭义的集群&#xff1a;redis 提供的…

Java里面的10个Lambda表达式必须掌握,提高生产力

目录 Java里面的10个Lambda表达式必须掌握&#xff0c;提高生产力 前言 1. 使用Lambda表达式进行集合遍历 2. 使用Lambda表达式进行集合过滤 3. 使用Lambda表达式进行集合映射 4. 使用Lambda表达式进行集合排序 5. 使用Lambda表达式进行集合归约 6. 使用Lambda表达式进…

使用docker-compose搭建达梦数据库主备集群

目录 1. Docker集群的搭建 2. 检查主备数据库 3. 主备集群的JDBC连接设置 1. Docker集群的搭建 达梦的镜像文件都是tar文件&#xff0c;通过docker load命令导入&#xff1a; docker load -i dm8_20240422_x86_rh6_64_rq_ent_8.1.3.140.tar 成功导入后&#xff0c;可看到…