目录
一、问题描述
二、解题思路
1.回溯法
2.贪心算法
三、代码实现
1.回溯法实现
2.贪心算法实现
四、刷题链接
一、问题描述
二、解题思路
1.回溯法
使用递归的方式,找到所有可能的走步方式,并记录递归深度(也就是走步次数),当走完数组时更新最小步长并返回。
这种方式的缺点就是耗时很长,还容易产生栈溢出的问题。
2.贪心算法
直接通过画图来说明一下过程,找局部最优解扩展到全局最优解:
这里注意:当 i >=maxReach时,说明不能到达数组末尾,返回-1
这里可以用下面的示例按照上面的执行过程模拟一下,理解一下到达不了数组末尾是一个什么过程。
三、代码实现
1.回溯法实现
import java.util.*;public class Solution {int minstep=-1;/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可** * @param nums int整型一维数组 * @return int整型*/public int minJumpStep (int[] nums) {// 首先对常见的几种场景进行判断if(nums.length==0||(nums.length>1&&nums[0]==0)){return -1;}else if(nums.length==1){return 0;}//使用回溯法findMinStep(nums,0,0);return minstep;}//回溯法对所有可能的情况进行判断public void findMinStep(int[] nums,int nowIndex,int steps){if(nowIndex>=nums.length-1){if(minstep==-1){minstep=steps;}else{minstep=Math.min(minstep,steps);}return;}if(nums[nowIndex]==0){return;}else{for(int i=1;i<=nums[nowIndex];i++){findMinStep(nums,nowIndex+i,steps+1);} }}
}
2.贪心算法实现
import java.util.*;public class Solution {int minstep=-1;/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可** * @param nums int整型一维数组 * @return int整型*/public int minJumpStep (int[] nums) {// 首先对常见的几种场景进行判断if(nums.length==0||(nums.length>1&&nums[0]==0)){return -1;}else if(nums.length==1){return 0;}//使用贪心算法//定义变量://nowstep 记录当前走了多少步//current 记录nowstep可以走到的最远距离//maxReach 记录走到current后到下一次更新step之前可以到达的最远距离//初始时,步数为1,走一步以后所在位置nums[0],最远可到达nums[0]int nowstep=1,current=nums[0],maxReach=nums[0];for(int i=1;i<nums.length;i++){maxReach=Math.max(maxReach,i+nums[i]);if(i>=maxReach){return -1;}if(current>=nums.length-1){break;}if(i==current){nowstep++;current=maxReach;}}return nowstep;}}
四、刷题链接
跳跃游戏(三)_牛客题霸_牛客网