转型AI产品经理(4):“认知负荷”如何应用在Chatbot产品

认知负荷理论主要探讨在学习过程中,人脑处理信息的有限容量以及如何优化信息的呈现方式以促进学习。认知负荷定律认为,学习者的工作记忆容量是有限的,而不同类型的认知任务会对工作记忆产生不同程度的负荷,从而影响学习效果。以下是对认知负荷定律的简要介绍:

1、认知负荷的三种类型:

    • 内在认知负荷:由任务本身的复杂性决定,是无法减少的。例如,学习复杂的数学公式自然会带来较高的内在认知负荷。

    • 外在认知负荷:由学习环境和教学材料的设计引起,可以通过优化教学设计来降低。不恰当的教学方法会无谓地增加认知负荷,而良好的设计则能减少外在认知负荷。

    • 关联认知负荷当学习材料被有效组织,与学习者已有的知识结构(图式)相匹配时,可以减少认知负荷,帮助信息更容易被吸收进入长时记忆。

2、工作记忆限制:工作记忆是信息暂时储存和加工的地方,它的容量有限,一般认为能同时处理的信息单元在5至9个之间(这个数字被称为米勒的“神奇数字7±2”)。因此,过多或过于复杂的信息会超出工作记忆的处理能力,导致学习效率下降。

3、图式理论:认知负荷理论强调通过构建和利用“图式”(即心理结构,用于组织和存储信息)来减轻工作记忆的负担。当学习材料与已有图式相结合时,信息处理更为高效,可以有效降低认知负荷。

长期以来,认知负荷理论因其广泛的适用性和实用性,在多个领域中得到了应用,包含教育、用户体验设计、职场培训,体育训练等领域。认知负荷定律提醒我们在设计学习材料、教学策略或产品交互时,要充分考虑人类认知的局限性,通过科学的方法减少不必要的认知负荷,从而促进有效学习和高效信息处理。那对于设计一款Chatbot的聊天机器人的产品来说,我们要如何将其思想应用到产品设计上呢?

Chatbot即聊天机器人,它是一种基于人工智能和自然语言处理技术的交互系统,它能够模拟人类对话,实现自动化服务和信息传递。它的设计通常涉及复杂的对话逻辑设计、用户意图识别、语音或文本交互、机器学习模型训练和持续优化等。应用好“认知负荷”理论可以显著提升Chatbot产品的用户体验,让用户在与Chatbot交互时不会感到信息过载或困惑,应用时包含但不限于以下场景:

  1. 简化交互流程:认知负荷理论强调减少用户在执行任务时需要记忆和处理的信息量。因此,在Chatbot设计中,应尽量简化对话流程,避免冗长或复杂的指令,确保用户能轻松理解并快速做出反应。同时,避免过多的按钮、链接和装饰元素,确保界面清晰易读。

  2. 清晰明确的提示与反馈:在用户输入信息后,提供直观且即时的反馈,帮助用户理解Chatbot的状态和他们的请求是否被正确理解。使用明确的语言,避免行业术语或模糊的表达,减少用户在解读反馈时的认知成本。

  3. 分段呈现信息:根据信息处理能力的限制,Chatbot应避免一次性提供过多信息,而应采用逐步揭示的方式,分段提供内容,使用户可以逐步消化吸收。分段提示时可采用只展示当前步骤相关的信息或按照重要性和紧急程度排序信息,先提供最关键的信息,逐步引导用户深入了解细节等方式。

  4. 个性化交互:通过分析用户的历史交互数据,Chatbot可以适应用户的偏好和需求,提供个性化的建议和回应,从而减少用户在选择过程中的决策负担。

  5. 视觉辅助:在适当情况下,利用图表或图像等视觉元素来辅助文字信息,可以帮助用户更快理解和记忆信息,降低认知负荷,或者是结合语音、文字和图像等多种交互方式,减少用户对单一感官的依赖。

  6. 适应性学习:设计Chatbot可使其能够根据用户的反馈和理解水平,自适应调整对话的难度,确保用户能够轻松跟随对话进程。此外,如果发现用户对某个话题或指令询问频繁,Chatbot可以主动优化对该主题的响应策略,简化未来类似情境下的交互流程。

    不同定位的Chatbot在具体的设计上还会因为业务的不同而有很多细节的变化。比如,在客户支持中,Chatbot可以通过逐步引导用户解决问题,提供相关的帮助文档链接,并在每一步提供清晰的反馈,确保用户理解每个步骤。而在教育类的Chatbot中,Chatbot可以通过分段讲解课程内容,提供实时答疑和个性化学习建议,帮助学生更高效地学习。

    在Chatbot的产品设计中通过应用“认知负荷”理论的思想可以显著提升产品的用户体验,让用户在与Chatbot交互时能够轻松理解和处理信息,提高交互效率和用户满意度。如果你还有其他的“认知负荷”理论应用场景,欢迎分享交流!



 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/347283.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最短路径Dijkstra算法详解

目录 最短距离问题 最短路径问题 进阶--标尺增多 升级方法 例题应用 最短距离问题 Dijkstra算法的策略: 设置集合S存放已被访问的顶点,然后执行n次下面的两个步骤(n为顶点个数): (1)每次…

Django框架中Ajax GET与POST请求的实战应用

系列文章目录 以下几篇侧重点为JavaScript内容0.0 JavaScript入门宝典:核心知识全攻略(上)JavaScript入门宝典:核心知识全攻略(下)Django框架中Ajax GET与POST请求的实战应用VSCode调试揭秘:L…

Nginx05-负载均衡详解、LNMP+NFS、会话保持、负载均衡状态检查upstream-check、平滑升级

目录 写在前面Nginx05Nginx 负载均衡(upstream模块)概述常见选择负载均衡和反向代理的区别Nginx负载均衡的方式Nginx运行状况检查备份服务器Nginx upstream模块选项说明 实验1 负载均衡两台frontfront配置lb01配置测试流程梳理 实验2 LNMPNFS小实验NFS配…

SpringBoot内置数据源

回顾: 在我们之前学习在配置文件当中配置对应的数据源的时候, 我们设置的数据源其实都是Druid的数据源, 并且其配置有两种方式, 当然这两种方式都需要我们导入对应的有关 德鲁伊 的依赖才行 一种是直接在开始设置为 druid 数据源类型的一种是在对应的正常的数据库配置下, 设置…

用户管理与服务器远程管理

用户管理 服务器系统版本介绍 windows服务器系统:win2000 win2003 win2008 win2012 linux服务器系统:Redhat Centos 用户管理 用户概述 (1)每一个用户登录系统后,拥有不同的操作权限。 (2)…

【C++课程学习】:类和对象(拷贝构造和运算符重载)

🎁个人主页:我们的五年 🔍系列专栏:C课程学习 🎉欢迎大家点赞👍评论📝收藏⭐文章 目录 ✍拷贝构造: 🍉特点一: 🍉特点二: &…

气膜建筑在体育和娱乐行业的多样化应用—轻空间

随着人们生活水平的提高和健康意识的增强,体育和娱乐行业的发展迎来了新的机遇和挑战。气膜建筑,作为一种新型建筑技术,因其独特的优势和广泛的应用场景,正在引领体育和娱乐行业的新潮流。 快速建设高品质体育场馆 气膜建筑以其快…

接口幂等性设计(5 大方案罗列)

结合案例、列举场景的接口幂等性设计方案。 方案 1. 状态机 业务场景,数据审核成功后进行短信通知,或者是订单状态变成已支付后,短信通知用户订单生成的详细信息,等等和状态有关的操作。 假设 status:0(待…

基于遗传优化算法的风力机位置布局matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于遗传优化算法的风力机位置布局matlab仿真,风力机位置布局优化是风能转换系统设计中的一个重要环节,旨在最大化风场的整体发电效率。仿…

创建 MFC DLL-使用关键字_declspec(dllexport)

本文仅供学习交流,严禁用于商业用途,如本文涉及侵权请及时联系本人将于及时删除 从MFC DLL中导出函数的另一种方法是在定义函数时使用关键字_declspec(dllexport)。这种情况下,不需要DEF文件。 导出函数的形式为: declspec(dll…

《书生·浦语大模型实战营》第4课 学习笔记:XTuner 微调 LLM:1.8B、多模态、Agent

文章大纲 1. 大模型微调简介2 快速上手2.1 环境安装2.2 前期准备2.2.1 数据集准备2.2.2 模型准备2.2.3 配置文件选择2.2.4 小结 2.3 配置文件修改2.4 模型训练2.4.1 常规训练2.4.2 使用 deepspeed 来加速训练2.4.3 训练结果2.4.4 小结 2.5 模型转换、整合、测试及部署2.5.1 模型…

[大模型]LLaMA3-8B-Instruct WebDemo 部署

环境准备 在 autodl 平台中租赁一个 3090 等 24G 显存的显卡机器,如下图所示镜像选择 PyTorch-->2.1.0-->3.10(ubuntu20.04)-->12.1 接下来打开刚刚租用服务器的 JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行 demo。 pip 换源…

FreeRTOS学习笔记-基于stm32(14)内存管理

一、FreeRTOS 内存管理简介 FreeRTOS有两种方法来创建任务,队列,信号量等,一种动态一种静态。静态方法需要手动定义任务堆栈。使用动态内存管理的时候 FreeRTOS 内核在创建任务、队列、信号量的时候会动态的申请 RAM。 我们在移植FreeRTOS时可…

6.结构体

目录 一、普通结构体(struct)1.1 说明1.2 举例1)结构体定义及访问2)结构体初化的简单写法3)结构体更新语法 二、元组结构体(tuple struct)2.1 概念2.2 示例 三、类单元结构体(unit-l…

安全智能预警软件有人试图窃取会立即发出高分贝警报已解锁VIP功能

一款手机安全智能预警软件,无论是网吧还是餐馆小聚,您的手机都能得到贴心的守护,一旦有人试图窃取,应用会立即发出高分贝警报,确保您在公交、地铁、商场等拥挤环境中依然能牢牢掌控手机。(解锁专业版&#…

【调试笔记-20240611-Linux-配置 OpenWrt-23.05 支持泛域名 acme 更新】

调试笔记-系列文章目录 调试笔记-20240611-Linux-配置 OpenWrt-23.05 支持泛域名 acme 更新 文章目录 调试笔记-系列文章目录调试笔记-20240611-Linux-配置 OpenWrt-23.05 支持泛域名 acme 更新 前言一、调试环境操作系统:Windows 10 专业版调试环境调试目标 二、调…

Go使用https

一、服务端 1. 生成私钥和证书 安装OpenSSL windows安装OpenSSL生成CA证书创建证书 以上两个步骤,参考:Go http2 和 h2c 2. 代码 package mainimport ("log""net/http""time""golang.org/x/net/http2" )co…

大语言模型QA

Q:关于 Yi-9B 通过 input/output cosine 来分析模型,可能文档里没有把前提说明白。该指标确实存在你们提到的不同模型大小不可比的问题。所以我们比较的是同一个模型在不同训练阶段,以及 layer 深度相同的dense models 之间的比较。除了发现yi-6B/34B 随着训练 tokens 的增加…

Qt | openSSL将TCP数据进行不对称(RSA)加密传输-windows平台实操(可行)

01、windows平台工具准备 QtQt5.14.2openSSL下载(选择适合自己的版本即可)https://slproweb.com/products/Win32OpenSSL.htmlTCP调试助手调试助手02、简介 首先简单介绍一下openssl。接着描述如何在windo

D435相机结合Yolo V8识别出目标物体,并转点云出抓取位姿。

最近项目上需要完成整个识别、定位、到最后的抓取流程。 分享一下,通过使用D435相机并结合Yolo V8识别出目标物体后,抠取出目标物体部分的有效深度图,最后将前景物体部分的RGB D435相机结合Yolo V8识别出目标物体,并转点云出抓取位…