【STM32】飞控设计

【一些入门知识】

1.飞行原理

 【垂直运动】

mg>F1+F2+F3+F4,此时做下降加速飞行
mg<F1+F2+F3+F4,此时做升高加速飞行
mg=F1+F2+F3+F4 ,此时垂直上保持匀速飞行。

 【偏航飞行】

ω 4 + ω 2 ≠ ω 1+ ω 3  就会产生水平旋转

 【俯仰飞行】

F1+F4<F2+F3 向前飞行
F1+F4>F2+F3 向后飞行

【横滚飞行】

F4+F3>F1+F2 向右飞行
F4+F3<F1+F2 向左飞行

 2.串级PID

3.飞控的控制系统

4.姿态解算

 一.硬件设计(简)

【主控】

1.电源:3.7V锂电池供电 - DCDC升压至5V -  LDO稳压3.3V

2.USB - 上位机

3.SPI - NRF24L01无线通讯

4.I2C - MPU6050陀螺仪

5.4个PWM

6.主控STM32F103C8T6

【遥控】

1.电源:3.7V锂电池供电 - LDO稳压3.3V

2.I2C - AT24CO2

3.4个ADC - 两个遥感

4.8个IO口 - 8个按键

5.SPI - NRF24L01无线通讯

6.主控STM32F103C8T6

二.主控程序

【MPU6050读取飞控三轴加速度、角速度 并且 卡尔曼滤波】

通过 MPU6050 寄存器手册:我们需要读取的三轴加速度和三轴角速度位于寄存器 0x3B~0X48,读取数据后,需要合成 16bit 的数据。
//从 0x3B 读取 6 个字节放到 buffer 里面
#define Acc_Read() i2cRead(0x68, 0X3B,6,buffer)//从 0x43 读取 6 个字节放到 buffer 里面
#define Gyro_Read() i2cRead(0x68, 0x43,6,&buffer[6])void MpuGetData(void) //读取陀螺仪数据加滤波
{uint8_t i;uint8_t buffer[12];Acc_Read();//读取加速度Gyro_Read();//读取角速度for(i=0;i<6;i++){//整合为 16bit,并减去水平静止校准值pMpu[i] = (((int16_t)buffer[i<<1] << 8) | buffer[(i<<1)+1])-MpuOffset[i];if(i < 3)//对加速度做卡尔曼滤波{{//卡尔曼滤波的数据初始化,这个 8192 是初始化默认 1 个 g 的加速度static struct _1_ekf_filter ekf[3] = {{0.02,0,0,0,0.001,0.543}{0.02,0, 0,0,0.001,0.543},{0.02,0, 0,0,0.001,0.543}};kalman_1(&ekf[i],(float)pMpu[i]); //调用一维卡尔曼滤波函数pMpu[i] = (int16_t)ekf[i].out;//卡尔曼滤波输出}}if(i > 2)//以下对角速度做一阶低通滤波{uint8_t k=i-3;const float factor = 0.15f; //滤波因素,因数越小,滤波力度越大static float last_mpuData[3];//滤波并保存滤波数据 last_mpuData[k] = last_mpuData[k] * (1 - factor) + pMpu[i] * factor; pMpu[i] = last_mpuData[k];//滤波输出}}
}

【遥控数据解析】

void RC_Analy(void)  
{static uint16_t cnt;if(NRF24L01_RxPacket(RC_rxData)==SUCCESS){ 	uint8_t i;uint8_t CheckSum=0;uint16_t thr;cnt = 0;for(i=0;i<31;i++){CheckSum +=  RC_rxData[i]; //检查数据的数量是否是31个}if(RC_rxData[31]==CheckSum && RC_rxData[0]==0xAA && RC_rxData[1]==0xAF)  //如果接收到的遥控数据正确{Remote.roll = ((uint16_t)RC_rxData[4]<<8) | RC_rxData[5];  //通道1Remote.roll = LIMIT(Remote.roll,1000,2000);Remote.pitch = ((uint16_t)RC_rxData[6]<<8) | RC_rxData[7];  //通道2Remote.pitch = LIMIT(Remote.pitch,1000,2000);Remote.thr = 	((uint16_t)RC_rxData[8]<<8) | RC_rxData[9];   //通道3Remote.thr = 	LIMIT(Remote.thr,1000,2000);Remote.yaw =  ((uint16_t)RC_rxData[10]<<8) | RC_rxData[11];   //通道4Remote.yaw =  LIMIT(Remote.yaw,1000,2000);Remote.AUX1 =  ((uint16_t)RC_rxData[12]<<8) | RC_rxData[13];   //通道5  左上角按键都属于通道5  Remote.AUX1 =  LIMIT(Remote.AUX1,1000,2000);Remote.AUX2 =  ((uint16_t)RC_rxData[14]<<8) | RC_rxData[15];   //通道6  右上角按键都属于通道6 Remote.AUX2 =  LIMIT(Remote.AUX2,1000,2000);Remote.AUX3 =  ((uint16_t)RC_rxData[16]<<8) | RC_rxData[17];   //通道7  左下边按键都属于通道7 Remote.AUX3 =  LIMIT(Remote.AUX3,1000,2000);Remote.AUX4 =  ((uint16_t)RC_rxData[18]<<8) | RC_rxData[19];   //通道8  右下边按键都属于通道6  Remote.AUX4 = LIMIT(Remote.AUX4,1000,4000);	{const float roll_pitch_ratio = 0.04f;const float yaw_ratio =   0.3f;	pidPitch.desired =-(Remote.pitch-1500)*roll_pitch_ratio;	 //将遥杆值作为飞行角度的期望值pidRoll.desired = -(Remote.roll-1500)*roll_pitch_ratio;if(Remote.yaw>1820){pidYaw.desired -= yaw_ratio;	}else if(Remote.yaw <1180){pidYaw.desired += yaw_ratio;	}						}remote_unlock();}}
//如果3秒没收到遥控数据,则判断遥控信号丢失,飞控在任何时候停止飞行,避免伤人。
//意外情况,使用者可紧急关闭遥控电源,飞行器会在3秒后立即关闭,避免伤人。
//立即关闭遥控,如果在飞行中会直接掉落,可能会损坏飞行器。else{cnt++;if(cnt>500){cnt = 0;ALL_flag.unlock = 0; NRF24L01_init();}}
}

【PID控制器的设计】

void FlightPidControl(float dt)
{volatile static uint8_t status=WAITING_1;switch(status){		case WAITING_1: //等待解锁if(ALL_flag.unlock){status = READY_11;	}			break;case READY_11:  //准备进入控制pidRest(pPidObject,6); //批量复位PID数据,防止上次遗留的数据影响本次控制Angle.yaw = pidYaw.desired =  pidYaw.measured = 0;   //锁定偏航角status = PROCESS_31;break;			case PROCESS_31: //正式进入控制if(Angle.pitch<-50||Angle.pitch>50||Angle.roll<-50||Angle.roll>50)//倾斜检测,大角度判定为意外情况,则紧急上锁	if(Remote.thr>1200)//当油门的很低时不做倾斜检测ALL_flag.unlock = EMERGENT;//打入紧急情况pidRateX.measured = MPU6050.gyroX * Gyro_G; //内环测量值 角度/秒pidRateY.measured = MPU6050.gyroY * Gyro_G;pidRateZ.measured = MPU6050.gyroZ * Gyro_G;pidPitch.measured = Angle.pitch; //外环测量值 单位:角度pidRoll.measured = Angle.roll;pidYaw.measured = Angle.yaw;pidUpdate(&pidRoll,dt);    //调用PID处理函数来处理外环	横滚角PID		pidRateX.desired = pidRoll.out; //将外环的PID输出作为内环PID的期望值即为串级PIDpidUpdate(&pidRateX,dt);  //再调用内环pidUpdate(&pidPitch,dt);    //调用PID处理函数来处理外环	俯仰角PID	pidRateY.desired = pidPitch.out;  pidUpdate(&pidRateY,dt); //再调用内环CascadePID(&pidRateZ,&pidYaw,dt);	//也可以直接调用串级PID函数来处理break;case EXIT_255:  //退出控制pidRest(pPidObject,6);status = WAITING_1;//返回等待解锁break;default:status = EXIT_255;break;}if(ALL_flag.unlock == EMERGENT) //意外情况,请使用遥控紧急上锁,飞控就可以在任何情况下紧急中止飞行,锁定飞行器,退出PID控制status = EXIT_255;
}

【4路PWM电机驱动】

void TIM2_PWM_Config(void)
{TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;TIM_OCInitTypeDef TIM_OCInitStructure;GPIO_InitTypeDef GPIO_InitStructure;/* 使能 GPIOA 时钟时钟 */RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 |GPIO_Pin_3;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_Init(GPIOA, &GPIO_InitStructure);/* 使能定时器 2 时钟 */RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);/* Time base configuration */TIM_TimeBaseStructure.TIM_Period = 999; //定时器计数周期 0-999 1000TIM_TimeBaseStructure.TIM_Prescaler = 8; //设置预分频:8+1 分频 8K PWM 频率TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分频系数:不分频TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //向上计数模式TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);/* PWM1 Mode configuration: Channel */TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //配置为 PWM 模式 1TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;TIM_OCInitStructure.TIM_Pulse = 0;//设置跳变值,当计数器计数到这个值时,电平发生跳变(即占空比) 初始值 0TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;//当定时器计数值小于定时设定值时为高电平/* 使能通道 1 */TIM_OC1Init(TIM2, &TIM_OCInitStructure);TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Enable);/* 使能通道 2 */TIM_OC2Init(TIM2, &TIM_OCInitStructure);TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Enable);/* 使能通道 3 */TIM_OC3Init(TIM2, &TIM_OCInitStructure);TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Enable);
/* 使能通道 4 */TIM_OC4Init(TIM2, &TIM_OCInitStructure);TIM_OC4PreloadConfig(TIM2, TIM_OCPreload_Enable);TIM_ARRPreloadConfig(TIM2, ENABLE); // 使能 TIM2 重载寄存器 ARRTIM_Cmd(TIM2, ENABLE); //使能定时器 2
}

【解锁 - 启动步骤 - 电机动力分配】

void MotorControl(void)
{	volatile static uint8_t status=WAITING_1;if(ALL_flag.unlock == EMERGENT) //意外情况,请使用遥控紧急上锁,飞控就可以在任何情况下紧急中止飞行,锁定飞行器,退出PID控制status = EXIT_255;	switch(status){		case WAITING_1: //等待解锁	MOTOR1 = MOTOR2 = MOTOR3 = MOTOR4 = 0;  //如果锁定,则电机输出都为0if(ALL_flag.unlock){status = WAITING_2;}case WAITING_2: //解锁完成后判断使用者是否开始拨动遥杆进行飞行控制if(Remote.thr>1100){low_thr_cnt_quiet=0;low_thr_cnt=0;pidRest(pPidObject,6);status = PROCESS_31;}break;case PROCESS_31:{int16_t temp,thr;temp = Remote.thr -1000; //油门+定高输出值//油门比例规划thr = 250+0.45f * temp;if(temp<10) //自动关停判断{if(low_thr_cnt<1500)low_thr_cnt++;thr = thr-(low_thr_cnt*0.6);//油门摇杆值慢慢降为0 if(MPU6050.accZ<8500&&MPU6050.accZ>7800){low_thr_cnt++;if(low_thr_cnt>600)//1800ms{thr = 0;pidRest(pPidObject,6);MOTOR1 = MOTOR2 = MOTOR3 = MOTOR4 =0;status = WAITING_2;break;}}} else low_thr_cnt=0;MOTOR1 = MOTOR2 = MOTOR3 = MOTOR4 = LIMIT(thr,0,700); //留100给姿态控制//以下输出的脉冲分配取决于电机PWM分布与飞控坐标体系。请看飞控坐标体系图解,与四个电机PWM分布分布	
//           机头      
//   PWM3     ♂       PWM1
//      *             *
//      	*       *
//    		  *   *
//      	    *  
//    		  *   *
//         *        *
//      *             *
//    PWM4           PWM2			
//		pidRateX.out 横滚角串级PID输出 控制左右,可以看出1 2和3 4,左右两组电机同增同减
//      pidRateY.out 俯仰角串级PID输出 控制前后,可以看出2 3和1 4,前后两组电机同增同减
//		pidRateZ.out 横滚角串级PID输出 控制旋转,可以看出2 4和1 3,两组对角线电机同增同减	// 正负号取决于算法输出 比如输出是正的话  往前飞必然是尾巴两个电机增加,往右飞必然是左边两个电机增加		MOTOR1 +=    + pidRateX.out + pidRateY.out + pidRateZ.out;//; 姿态输出分配给各个电机的控制量MOTOR2 +=    + pidRateX.out - pidRateY.out - pidRateZ.out ;//;MOTOR3 +=    - pidRateX.out + pidRateY.out - pidRateZ.out;MOTOR4 +=    - pidRateX.out - pidRateY.out + pidRateZ.out;//;}	break;case EXIT_255:MOTOR1 = MOTOR2 = MOTOR3 = MOTOR4 = 0;  //如果锁定,则电机输出都为0status = WAITING_1;	break;default:break;}TIM2->CCR1 = LIMIT(MOTOR1,0,1000);  //更新PWMTIM2->CCR2 = LIMIT(MOTOR2,0,1000);TIM2->CCR3 = LIMIT(MOTOR3,0,1000);TIM2->CCR4 = LIMIT(MOTOR4,0,1000);
} 

【水平校准】

MPU6050 获取的数值要减去水平静止校准值才是真正的飞控可用数据
void MpuGetOffset(void) //校准
{int32_t buffer[6]={0};int16_t i;  uint8_t k=30;const int8_t MAX_GYRO_QUIET = 5;const int8_t MIN_GYRO_QUIET = -5;	
/*           wait for calm down    	                                                          */int16_t LastGyro[3] = {0};int16_t ErrorGyro[3];	/*           set offset initial to zero    		*/memset(MpuOffset,0,12);MpuOffset[2] = 8192;   //set offset from the 8192  TIM_ITConfig(  //使能或者失能指定的TIM中断TIM1,TIM_IT_Update ,DISABLE  //使能);	while(k--)//30次静止则判定飞行器处于静止状态{do{delay_ms(10);MpuGetData();for(i=0;i<3;i++){ErrorGyro[i] = pMpu[i+3] - LastGyro[i];LastGyro[i] = pMpu[i+3];	}			}while ((ErrorGyro[0] >  MAX_GYRO_QUIET )|| (ErrorGyro[0] < MIN_GYRO_QUIET)//标定静止||(ErrorGyro[1] > MAX_GYRO_QUIET )|| (ErrorGyro[1] < MIN_GYRO_QUIET)||(ErrorGyro[2] > MAX_GYRO_QUIET )|| (ErrorGyro[2] < MIN_GYRO_QUIET));}	/*           throw first 100  group data and make 256 group average as offset                    */	for(i=0;i<356;i++)//水平校准{		MpuGetData();if(100 <= i)//取256组数据进行平均{uint8_t k;for(k=0;k<6;k++){buffer[k] += pMpu[k];}}}for(i=0;i<6;i++){MpuOffset[i] = buffer[i]>>8;}TIM_ITConfig(  //使能或者失能指定的TIM中断TIM1, TIM_IT_Update ,ENABLE  //使能);FLASH_write(MpuOffset,6);//将数据写到FLASH中,一共有6个int16数据
}

三.遥控程序

摇杆ADC采集和转换

配置 4 路 ADC 采集遥控摇杆值。DMA 自动采集,转换完成后自动将 ADC 结果存于ADC_ConvertedValue 。
void ADC1_Mode_Config(void)
{DMA_InitTypeDef DMA_InitStructure;ADC_InitTypeDef ADC_InitStructure;/* DMA channel1 configuration */DMA_DeInit(DMA1_Channel1);DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address; //ADC 结果寄存器地址DMA_InitStructure.DMA_MemoryBaseAddr = (u32)&ADC_ConvertedValue;//输入数组地址地址DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;DMA_InitStructure.DMA_BufferSize = 4;//转换 4 路DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;//外设地址固定DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; //内存地址固定DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; //半字(12bit ADC存放)DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; //循环传输DMA_InitStructure.DMA_Priority = DMA_Priority_High;DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;DMA_Init(DMA1_Channel1, &DMA_InitStructure);/* Enable DMA channel1 */DMA_Cmd(DMA1_Channel1, ENABLE);/* ADC1 configuration */ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //独立 ADC 模式ADC_InitStructure.ADC_ScanConvMode = ENABLE ; //禁止扫描模式,扫描模式用于多通道采集ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; //开启连续转换模式,即不停地进行 ADC 转换ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //不使用外部触发转换ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //采集数据右对齐ADC_InitStructure.ADC_NbrOfChannel = 4; //4 路 ADC 通道ADC_Init(ADC1, &ADC_InitStructure);/*配置 ADC 时钟,为 PCLK2 的 8 分频,即 6MHz,ADC 频率最高不能超过 14MHz*/RCC_ADCCLKConfig(RCC_PCLK2_Div8); /*配置 ADC1 的通道 11 为 55. 5 个采样周期,序列为 1 */ ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5);ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 2, ADC_SampleTime_55Cycles5);ADC_RegularChannelConfig(ADC1, ADC_Channel_2, 3, ADC_SampleTime_55Cycles5);ADC_RegularChannelConfig(ADC1, ADC_Channel_3, 4, ADC_SampleTime_55Cycles5);/* 使能 DMA 外设*/ADC_DMACmd(ADC1, ENABLE);/*使能 ADC1 外设 */ADC_Cmd(ADC1, ENABLE);/*复位校准寄存器 */ ADC_ResetCalibration(ADC1);/*等待校准寄存器复位完成 */while(ADC_GetResetCalibrationStatus(ADC1));
/* ADC 校准 */ADC_StartCalibration(ADC1);
/* 等待校准完成*/while(ADC_GetCalibrationStatus(ADC1));
/* 软件启动 ADC 转换 */ ADC_SoftwareStartConvCmd(ADC1, ENABLE);
}
每 10ms 进行一次 ADC 数据的转换为航模遥控数据:
12bitADC(0~4096)*0.25 +1000   ≈  航模标准数据 1000~2000

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/349494.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

maven学习小结

目录结构 maven为项目提供一个标准目录结构 环境配置 下载maven包后解压&#xff0c;配置解压目录的bin到path变量&#xff0c;然后终端mvn -v&#xff0c;有回显则表明maven安装成功 pom POM&#xff0c;Project Object Model&#xff0c;项目对象模型&#xff0c;是一个xm…

MySQL—多表查询—联合查询

一、引言 之前学习了连接查询。现在学习联合查询。 union&#xff1a;联合、联盟 对于union查询&#xff0c;就是把多次查询的结果合并起来&#xff0c;形成一个新的查询结果集 涉及到两个关键字&#xff1a;union 和 union all 注意&#xff1a; union 会把上面两个SQL查询…

人脸匹配——OpenCV

人脸匹配 导入所需的库加载dlib的人脸识别模型和面部检测器读取图片并转换为灰度图比较两张人脸选择图片并显示结果比较图片创建GUI界面运行GUI主循环运行显示全部代码 导入所需的库 cv2&#xff1a;OpenCV库&#xff0c;用于图像处理。 dlib&#xff1a;一个机器学习库&#x…

Python第二语言(十四、高阶基础)

目录 1. 闭包 1.1 使用闭包注意事项 1.2 小结 2. 装饰器&#xff1a;实际上也是一种闭包&#xff1b; 2.1 装饰器的写法&#xff08;闭包写法&#xff09; &#xff1a;基础写法&#xff0c;只是解释装饰器是怎么写的&#xff1b; 2.2 装饰器的语法糖写法&#xff1a;函数…

自动化数据驱动?最全接口自动化测试yaml数据驱动实战

前言 我们在做自动化测试的时候&#xff0c;通常会把配置信息和测试数据存储到特定的文件中&#xff0c;以实现数据和脚本的分离&#xff0c;从而提高代码的易读性和可维护性&#xff0c;便于后期优化。 而配置文件的形式更是多种多样&#xff0c;比如&#xff1a;ini、yaml、…

Vue项目实践:使用滚动下拉分页优化大数据展示页面【通过防抖加标志位进行方案优化】

Vue项目实践&#xff1a;使用滚动下拉分页优化大数据展示页面 前言 传统的分页机制通过点击页码来加载更多内容&#xff0c;虽然直观&#xff0c;但在处理大量数据时可能会导致用户体验不佳。相比之下&#xff0c;滚动下拉分页能够在用户滚动到页面底部时自动加载更多内容&…

使用difflib实现文件差异比较用html显示

1.默认方式&#xff0c;其中加入文本过长&#xff0c;需要换行&#xff0c;因此做 contenthtml_output.replace(</style>,table.diff td {word-wrap: break-word;white-space: pre-wrap;max-width: 100%;}</style>)&#xff0c;添加换行操作 ps&#xff1a;当前te…

人工智能和机器学习这两个概念有什么区别?

什么是人工智能&#xff1f; 先来说下人工智能&#xff0c;人工智能&#xff08;Artificial Intelligence&#xff09;&#xff0c;英文缩写为AI&#xff0c;通俗来讲就是用机器去做在过去只有人能做的事。 人工智能最早是由图灵提出的&#xff0c;在1950年&#xff0c;计算机…

Syncovery:跨平台高效文件备份与同步的得力助手

在数字化时代&#xff0c;数据安全与文件同步已成为个人及企业不可或缺的需求。Syncovery作为一款专为Mac和Windows用户设计的文件备份和同步工具&#xff0c;凭借其高效、安全和易用的特点&#xff0c;赢得了广泛赞誉。 一、强大备份功能 Syncovery支持多种备份方案和数据格…

AI宣传文案软件有哪些?5款AI软件推荐

AI宣传文案软件有哪些&#xff1f;AI宣传文案软件在现代营销和创意产业中扮演着越来越重要的角色&#xff0c;它们凭借先进的自然语言处理、机器学习和深度学习技术&#xff0c;不仅解放了创作者的双手&#xff0c;还大大提升了文案的生成效率和质量。这些软件能够精准捕捉用户…

防火墙安全管理

大多数企业通过互联网传输关键数据&#xff0c;因此部署适当的网络安全措施是必要的&#xff0c;拥有足够的网络安全措施可以为网络基础设施提供大量的保护&#xff0c;防止黑客、恶意用户、病毒攻击和数据盗窃。 网络安全结合了多层保护来限制恶意用户&#xff0c;并仅允许授…

分布式事务的八种方案解析(1)

针对不同的分布式场景业界常见的解决方案有2PC、TCC、可靠消息最终一致性、最大努力通知等方案&#xff0c;以下总结8 种常见的解决方案&#xff0c;帮助大家在实际的分布式系统中更好地运用事务。 1.2PC 二阶段提交协议&#xff08;Two-phase commit protocol&#xff09;&…

微信小程序毕业设计-实验室管理系统项目开发实战(附源码+论文)

大家好&#xff01;我是程序猿老A&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。 &#x1f49e;当前专栏&#xff1a;微信小程序毕业设计 精彩专栏推荐&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb; &#x1f380; Python毕业设计…

(三十九)Vue之集中式的状态管理机制Vuex

目录 概念vuex的核心概念State&#xff08;状态&#xff09;Getters&#xff08;获取器&#xff09;Mutations&#xff08;突变&#xff09;Actions&#xff08;动作&#xff09; 搭建vuex环境基本使用getters的使用 上一篇&#xff1a;&#xff08;三十八&#xff09;Vue之插槽…

安装台式电脑网卡驱动

安装电脑网卡驱动 1. 概述2. 具体方法2.1 先确定主板型号2.2 详细操作步骤如下2.2.1 方法一2.2.2 方法二2.2 主流主板官网地址 结束语 1. 概述 遇到重装系统后、或者遇到网卡驱动出现问题没有网络时&#xff0c;当不知道怎么办时&#xff0c;以下的方法&#xff0c;可以作为一…

工业烤箱设备厂家:专业制造,助力工业发展

随着现代工业的不断发展&#xff0c;工业烤箱设备在各个领域的应用越来越广泛。作为专业的工业烤箱设备厂家&#xff0c;我们致力于为客户提供高质量、高效率的烤箱设备&#xff0c;助力工业生产的顺利进行。 工业烤箱设备在工业生产中扮演着至关重要的角色。无论是电子、化工、…

微信小程序查分易如何使用?

期末马上到了&#xff0c;老师们又开始为发放成绩而头疼了&#xff0c;堆积如山的试卷&#xff0c;密密麻麻的分数&#xff0c;还有那些不断响起的家长电话&#xff0c;真是让人心烦。别担心&#xff0c;今天就让我来介绍一个让老师“偷懒”神器——查分易微信小程序 第一步&am…

Java多线程-StampedLock(原子读写锁)

StampedLock 是读写锁的实现&#xff0c;对比 ReentrantReadWriteLock 主要不同是该锁不允许重入&#xff0c;多了乐观读的功能&#xff0c;使用上会更加复杂一些&#xff0c;但是具有更好的性能表现。StampedLock 的状态由版本和读写锁持有计数组成。 获取锁方法返回一个邮戳&…

报名进行中 | ISCSLP2024 对话语音克隆挑战赛(CoVoC)

晴数智慧(Magic Data)联合西北工业大学音频语音与语言处理研究组(ASLPNPU)、新加坡资讯通讯研究院(I2R)、深圳大数据研究院(SRIBD)、香港中文大学(深圳)等多家单位在2024年中文口语语言处理国际会议(ISCSLP2024)上推出对话语音克隆挑战赛(Conversational Voice Clone Challenge…

【leetcode--同构字符串】

要求&#xff1a;判断两个字符串的形式是不是一致&#xff0c;即是不是AABC或者ABBBCC这种。 trick&#xff1a;使用set&#xff08;&#xff09;结合zip&#xff08;&#xff09;。 set&#xff08;&#xff09;用法&#xff1a;用于创建一个不包含重复元素的集合 zip&#…