【一些入门知识】
1.飞行原理
【垂直运动】
当 mg>F1+F2+F3+F4,此时做下降加速飞行当 mg<F1+F2+F3+F4,此时做升高加速飞行当 mg=F1+F2+F3+F4 ,此时垂直上保持匀速飞行。
【偏航飞行】
ω 4 + ω 2 ≠ ω 1+ ω 3 就会产生水平旋转
【俯仰飞行】
当 F1+F4<F2+F3 向前飞行当 F1+F4>F2+F3 向后飞行
【横滚飞行】
当 F4+F3>F1+F2 向右飞行当 F4+F3<F1+F2 向左飞行
2.串级PID
3.飞控的控制系统
4.姿态解算
一.硬件设计(简)
【主控】
1.电源:3.7V锂电池供电 - DCDC升压至5V - LDO稳压3.3V
2.USB - 上位机
3.SPI - NRF24L01无线通讯
4.I2C - MPU6050陀螺仪
5.4个PWM
6.主控STM32F103C8T6
【遥控】
1.电源:3.7V锂电池供电 - LDO稳压3.3V
2.I2C - AT24CO2
3.4个ADC - 两个遥感
4.8个IO口 - 8个按键
5.SPI - NRF24L01无线通讯
6.主控STM32F103C8T6
二.主控程序
【MPU6050读取飞控三轴加速度、角速度 并且 卡尔曼滤波】
通过 MPU6050 寄存器手册:我们需要读取的三轴加速度和三轴角速度位于寄存器 0x3B~0X48,读取数据后,需要合成 16bit 的数据。
//从 0x3B 读取 6 个字节放到 buffer 里面
#define Acc_Read() i2cRead(0x68, 0X3B,6,buffer)//从 0x43 读取 6 个字节放到 buffer 里面
#define Gyro_Read() i2cRead(0x68, 0x43,6,&buffer[6])void MpuGetData(void) //读取陀螺仪数据加滤波
{uint8_t i;uint8_t buffer[12];Acc_Read();//读取加速度Gyro_Read();//读取角速度for(i=0;i<6;i++){//整合为 16bit,并减去水平静止校准值pMpu[i] = (((int16_t)buffer[i<<1] << 8) | buffer[(i<<1)+1])-MpuOffset[i];if(i < 3)//对加速度做卡尔曼滤波{{//卡尔曼滤波的数据初始化,这个 8192 是初始化默认 1 个 g 的加速度static struct _1_ekf_filter ekf[3] = {{0.02,0,0,0,0.001,0.543}{0.02,0, 0,0,0.001,0.543},{0.02,0, 0,0,0.001,0.543}};kalman_1(&ekf[i],(float)pMpu[i]); //调用一维卡尔曼滤波函数pMpu[i] = (int16_t)ekf[i].out;//卡尔曼滤波输出}}if(i > 2)//以下对角速度做一阶低通滤波{uint8_t k=i-3;const float factor = 0.15f; //滤波因素,因数越小,滤波力度越大static float last_mpuData[3];//滤波并保存滤波数据 last_mpuData[k] = last_mpuData[k] * (1 - factor) + pMpu[i] * factor; pMpu[i] = last_mpuData[k];//滤波输出}}
}
【遥控数据解析】
void RC_Analy(void)
{static uint16_t cnt;if(NRF24L01_RxPacket(RC_rxData)==SUCCESS){ uint8_t i;uint8_t CheckSum=0;uint16_t thr;cnt = 0;for(i=0;i<31;i++){CheckSum += RC_rxData[i]; //检查数据的数量是否是31个}if(RC_rxData[31]==CheckSum && RC_rxData[0]==0xAA && RC_rxData[1]==0xAF) //如果接收到的遥控数据正确{Remote.roll = ((uint16_t)RC_rxData[4]<<8) | RC_rxData[5]; //通道1Remote.roll = LIMIT(Remote.roll,1000,2000);Remote.pitch = ((uint16_t)RC_rxData[6]<<8) | RC_rxData[7]; //通道2Remote.pitch = LIMIT(Remote.pitch,1000,2000);Remote.thr = ((uint16_t)RC_rxData[8]<<8) | RC_rxData[9]; //通道3Remote.thr = LIMIT(Remote.thr,1000,2000);Remote.yaw = ((uint16_t)RC_rxData[10]<<8) | RC_rxData[11]; //通道4Remote.yaw = LIMIT(Remote.yaw,1000,2000);Remote.AUX1 = ((uint16_t)RC_rxData[12]<<8) | RC_rxData[13]; //通道5 左上角按键都属于通道5 Remote.AUX1 = LIMIT(Remote.AUX1,1000,2000);Remote.AUX2 = ((uint16_t)RC_rxData[14]<<8) | RC_rxData[15]; //通道6 右上角按键都属于通道6 Remote.AUX2 = LIMIT(Remote.AUX2,1000,2000);Remote.AUX3 = ((uint16_t)RC_rxData[16]<<8) | RC_rxData[17]; //通道7 左下边按键都属于通道7 Remote.AUX3 = LIMIT(Remote.AUX3,1000,2000);Remote.AUX4 = ((uint16_t)RC_rxData[18]<<8) | RC_rxData[19]; //通道8 右下边按键都属于通道6 Remote.AUX4 = LIMIT(Remote.AUX4,1000,4000); {const float roll_pitch_ratio = 0.04f;const float yaw_ratio = 0.3f; pidPitch.desired =-(Remote.pitch-1500)*roll_pitch_ratio; //将遥杆值作为飞行角度的期望值pidRoll.desired = -(Remote.roll-1500)*roll_pitch_ratio;if(Remote.yaw>1820){pidYaw.desired -= yaw_ratio; }else if(Remote.yaw <1180){pidYaw.desired += yaw_ratio; } }remote_unlock();}}
//如果3秒没收到遥控数据,则判断遥控信号丢失,飞控在任何时候停止飞行,避免伤人。
//意外情况,使用者可紧急关闭遥控电源,飞行器会在3秒后立即关闭,避免伤人。
//立即关闭遥控,如果在飞行中会直接掉落,可能会损坏飞行器。else{cnt++;if(cnt>500){cnt = 0;ALL_flag.unlock = 0; NRF24L01_init();}}
}
【PID控制器的设计】
void FlightPidControl(float dt)
{volatile static uint8_t status=WAITING_1;switch(status){ case WAITING_1: //等待解锁if(ALL_flag.unlock){status = READY_11; } break;case READY_11: //准备进入控制pidRest(pPidObject,6); //批量复位PID数据,防止上次遗留的数据影响本次控制Angle.yaw = pidYaw.desired = pidYaw.measured = 0; //锁定偏航角status = PROCESS_31;break; case PROCESS_31: //正式进入控制if(Angle.pitch<-50||Angle.pitch>50||Angle.roll<-50||Angle.roll>50)//倾斜检测,大角度判定为意外情况,则紧急上锁 if(Remote.thr>1200)//当油门的很低时不做倾斜检测ALL_flag.unlock = EMERGENT;//打入紧急情况pidRateX.measured = MPU6050.gyroX * Gyro_G; //内环测量值 角度/秒pidRateY.measured = MPU6050.gyroY * Gyro_G;pidRateZ.measured = MPU6050.gyroZ * Gyro_G;pidPitch.measured = Angle.pitch; //外环测量值 单位:角度pidRoll.measured = Angle.roll;pidYaw.measured = Angle.yaw;pidUpdate(&pidRoll,dt); //调用PID处理函数来处理外环 横滚角PID pidRateX.desired = pidRoll.out; //将外环的PID输出作为内环PID的期望值即为串级PIDpidUpdate(&pidRateX,dt); //再调用内环pidUpdate(&pidPitch,dt); //调用PID处理函数来处理外环 俯仰角PID pidRateY.desired = pidPitch.out; pidUpdate(&pidRateY,dt); //再调用内环CascadePID(&pidRateZ,&pidYaw,dt); //也可以直接调用串级PID函数来处理break;case EXIT_255: //退出控制pidRest(pPidObject,6);status = WAITING_1;//返回等待解锁break;default:status = EXIT_255;break;}if(ALL_flag.unlock == EMERGENT) //意外情况,请使用遥控紧急上锁,飞控就可以在任何情况下紧急中止飞行,锁定飞行器,退出PID控制status = EXIT_255;
}
【4路PWM电机驱动】
void TIM2_PWM_Config(void)
{TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;TIM_OCInitTypeDef TIM_OCInitStructure;GPIO_InitTypeDef GPIO_InitStructure;/* 使能 GPIOA 时钟时钟 */RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 |GPIO_Pin_3;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_Init(GPIOA, &GPIO_InitStructure);/* 使能定时器 2 时钟 */RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);/* Time base configuration */TIM_TimeBaseStructure.TIM_Period = 999; //定时器计数周期 0-999 1000TIM_TimeBaseStructure.TIM_Prescaler = 8; //设置预分频:8+1 分频 8K PWM 频率TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分频系数:不分频TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //向上计数模式TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);/* PWM1 Mode configuration: Channel */TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //配置为 PWM 模式 1TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;TIM_OCInitStructure.TIM_Pulse = 0;//设置跳变值,当计数器计数到这个值时,电平发生跳变(即占空比) 初始值 0TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;//当定时器计数值小于定时设定值时为高电平/* 使能通道 1 */TIM_OC1Init(TIM2, &TIM_OCInitStructure);TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Enable);/* 使能通道 2 */TIM_OC2Init(TIM2, &TIM_OCInitStructure);TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Enable);/* 使能通道 3 */TIM_OC3Init(TIM2, &TIM_OCInitStructure);TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Enable);
/* 使能通道 4 */TIM_OC4Init(TIM2, &TIM_OCInitStructure);TIM_OC4PreloadConfig(TIM2, TIM_OCPreload_Enable);TIM_ARRPreloadConfig(TIM2, ENABLE); // 使能 TIM2 重载寄存器 ARRTIM_Cmd(TIM2, ENABLE); //使能定时器 2
}
【解锁 - 启动步骤 - 电机动力分配】
void MotorControl(void)
{ volatile static uint8_t status=WAITING_1;if(ALL_flag.unlock == EMERGENT) //意外情况,请使用遥控紧急上锁,飞控就可以在任何情况下紧急中止飞行,锁定飞行器,退出PID控制status = EXIT_255; switch(status){ case WAITING_1: //等待解锁 MOTOR1 = MOTOR2 = MOTOR3 = MOTOR4 = 0; //如果锁定,则电机输出都为0if(ALL_flag.unlock){status = WAITING_2;}case WAITING_2: //解锁完成后判断使用者是否开始拨动遥杆进行飞行控制if(Remote.thr>1100){low_thr_cnt_quiet=0;low_thr_cnt=0;pidRest(pPidObject,6);status = PROCESS_31;}break;case PROCESS_31:{int16_t temp,thr;temp = Remote.thr -1000; //油门+定高输出值//油门比例规划thr = 250+0.45f * temp;if(temp<10) //自动关停判断{if(low_thr_cnt<1500)low_thr_cnt++;thr = thr-(low_thr_cnt*0.6);//油门摇杆值慢慢降为0 if(MPU6050.accZ<8500&&MPU6050.accZ>7800){low_thr_cnt++;if(low_thr_cnt>600)//1800ms{thr = 0;pidRest(pPidObject,6);MOTOR1 = MOTOR2 = MOTOR3 = MOTOR4 =0;status = WAITING_2;break;}}} else low_thr_cnt=0;MOTOR1 = MOTOR2 = MOTOR3 = MOTOR4 = LIMIT(thr,0,700); //留100给姿态控制//以下输出的脉冲分配取决于电机PWM分布与飞控坐标体系。请看飞控坐标体系图解,与四个电机PWM分布分布
// 机头
// PWM3 ♂ PWM1
// * *
// * *
// * *
// *
// * *
// * *
// * *
// PWM4 PWM2
// pidRateX.out 横滚角串级PID输出 控制左右,可以看出1 2和3 4,左右两组电机同增同减
// pidRateY.out 俯仰角串级PID输出 控制前后,可以看出2 3和1 4,前后两组电机同增同减
// pidRateZ.out 横滚角串级PID输出 控制旋转,可以看出2 4和1 3,两组对角线电机同增同减 // 正负号取决于算法输出 比如输出是正的话 往前飞必然是尾巴两个电机增加,往右飞必然是左边两个电机增加 MOTOR1 += + pidRateX.out + pidRateY.out + pidRateZ.out;//; 姿态输出分配给各个电机的控制量MOTOR2 += + pidRateX.out - pidRateY.out - pidRateZ.out ;//;MOTOR3 += - pidRateX.out + pidRateY.out - pidRateZ.out;MOTOR4 += - pidRateX.out - pidRateY.out + pidRateZ.out;//;} break;case EXIT_255:MOTOR1 = MOTOR2 = MOTOR3 = MOTOR4 = 0; //如果锁定,则电机输出都为0status = WAITING_1; break;default:break;}TIM2->CCR1 = LIMIT(MOTOR1,0,1000); //更新PWMTIM2->CCR2 = LIMIT(MOTOR2,0,1000);TIM2->CCR3 = LIMIT(MOTOR3,0,1000);TIM2->CCR4 = LIMIT(MOTOR4,0,1000);
}
【水平校准】
MPU6050 获取的数值要减去水平静止校准值才是真正的飞控可用数据
void MpuGetOffset(void) //校准
{int32_t buffer[6]={0};int16_t i; uint8_t k=30;const int8_t MAX_GYRO_QUIET = 5;const int8_t MIN_GYRO_QUIET = -5;
/* wait for calm down */int16_t LastGyro[3] = {0};int16_t ErrorGyro[3]; /* set offset initial to zero */memset(MpuOffset,0,12);MpuOffset[2] = 8192; //set offset from the 8192 TIM_ITConfig( //使能或者失能指定的TIM中断TIM1,TIM_IT_Update ,DISABLE //使能); while(k--)//30次静止则判定飞行器处于静止状态{do{delay_ms(10);MpuGetData();for(i=0;i<3;i++){ErrorGyro[i] = pMpu[i+3] - LastGyro[i];LastGyro[i] = pMpu[i+3]; } }while ((ErrorGyro[0] > MAX_GYRO_QUIET )|| (ErrorGyro[0] < MIN_GYRO_QUIET)//标定静止||(ErrorGyro[1] > MAX_GYRO_QUIET )|| (ErrorGyro[1] < MIN_GYRO_QUIET)||(ErrorGyro[2] > MAX_GYRO_QUIET )|| (ErrorGyro[2] < MIN_GYRO_QUIET));} /* throw first 100 group data and make 256 group average as offset */ for(i=0;i<356;i++)//水平校准{ MpuGetData();if(100 <= i)//取256组数据进行平均{uint8_t k;for(k=0;k<6;k++){buffer[k] += pMpu[k];}}}for(i=0;i<6;i++){MpuOffset[i] = buffer[i]>>8;}TIM_ITConfig( //使能或者失能指定的TIM中断TIM1, TIM_IT_Update ,ENABLE //使能);FLASH_write(MpuOffset,6);//将数据写到FLASH中,一共有6个int16数据
}
三.遥控程序
【摇杆ADC采集和转换】
配置 4 路 ADC 采集遥控摇杆值。DMA 自动采集,转换完成后自动将 ADC 结果存于ADC_ConvertedValue 。
void ADC1_Mode_Config(void)
{DMA_InitTypeDef DMA_InitStructure;ADC_InitTypeDef ADC_InitStructure;/* DMA channel1 configuration */DMA_DeInit(DMA1_Channel1);DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address; //ADC 结果寄存器地址DMA_InitStructure.DMA_MemoryBaseAddr = (u32)&ADC_ConvertedValue;//输入数组地址地址DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;DMA_InitStructure.DMA_BufferSize = 4;//转换 4 路DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;//外设地址固定DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; //内存地址固定DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; //半字(12bit ADC存放)DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; //循环传输DMA_InitStructure.DMA_Priority = DMA_Priority_High;DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;DMA_Init(DMA1_Channel1, &DMA_InitStructure);/* Enable DMA channel1 */DMA_Cmd(DMA1_Channel1, ENABLE);/* ADC1 configuration */ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //独立 ADC 模式ADC_InitStructure.ADC_ScanConvMode = ENABLE ; //禁止扫描模式,扫描模式用于多通道采集ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; //开启连续转换模式,即不停地进行 ADC 转换ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //不使用外部触发转换ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //采集数据右对齐ADC_InitStructure.ADC_NbrOfChannel = 4; //4 路 ADC 通道ADC_Init(ADC1, &ADC_InitStructure);/*配置 ADC 时钟,为 PCLK2 的 8 分频,即 6MHz,ADC 频率最高不能超过 14MHz*/RCC_ADCCLKConfig(RCC_PCLK2_Div8); /*配置 ADC1 的通道 11 为 55. 5 个采样周期,序列为 1 */ ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5);ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 2, ADC_SampleTime_55Cycles5);ADC_RegularChannelConfig(ADC1, ADC_Channel_2, 3, ADC_SampleTime_55Cycles5);ADC_RegularChannelConfig(ADC1, ADC_Channel_3, 4, ADC_SampleTime_55Cycles5);/* 使能 DMA 外设*/ADC_DMACmd(ADC1, ENABLE);/*使能 ADC1 外设 */ADC_Cmd(ADC1, ENABLE);/*复位校准寄存器 */ ADC_ResetCalibration(ADC1);/*等待校准寄存器复位完成 */while(ADC_GetResetCalibrationStatus(ADC1));
/* ADC 校准 */ADC_StartCalibration(ADC1);
/* 等待校准完成*/while(ADC_GetCalibrationStatus(ADC1));
/* 软件启动 ADC 转换 */ ADC_SoftwareStartConvCmd(ADC1, ENABLE);
}
每 10ms 进行一次 ADC 数据的转换为航模遥控数据:
12bitADC(0~4096)*0.25 +1000 ≈ 航模标准数据 1000~2000