DeepSpeed Monitoring Comm. Logging

Monitoring

支持多种后端:Tensorboard、WandB、Comet、CSV文件;

TensorBoard例子:

自动监控:DeepSpeed自动把重要metric记录下来。只需在配置文件里enable相应的看板后端即可:

{"tensorboard": {"enabled": true,"output_path": "output/ds_logs/","job_name": "train_bert"}"wandb": {"enabled": true,"team": "my_team","group": "my_group","project": "my_project"}"comet": {"enabled": true,"project": "my_project","experiment_name": "my_experiment"}"csv_monitor": {"enabled": true,"output_path": "output/ds_logs/","job_name": "train_bert"}
}

 自定义监控:

# Step 1: Import monitor (and DeepSpeed config, if needed)
from deepspeed.monitor.monitor import MonitorMaster
from deepspeed.runtime.config import DeepSpeedConfig

# Step 2: Initialized monitor with DeepSpeed config (get DeepSpeed config object, if needed)
ds_config = DeepSpeedConfig("ds_config.json")
monitor = MonitorMaster(ds_config.monitor_config)

for epoch in range(2):

    running_loss = 0.0
    for i, data in enumerate(trainloader):
        pre = time.time()
        inputs, labels = data[0].to(model_engine.local_rank), data[1].to(
            model_engine.local_rank)
        if fp16:
            inputs = inputs.half()
        outputs = model_engine(inputs)
        loss = criterion(outputs, labels)

        model_engine.backward(loss)
        model_engine.step()
        post = time.time()
        # Step 3: Create list of 3-tuple records (single entry in this case)
        events = [("Time per step", post-pre, model_engine.global_samples)]
        # Step 4: Call monitor.write_events on the list from step 3
        monitor.write_events(events)

 [("Time per step", post-pre, model_engine.global_samples)],<表名,纵轴值,横轴值>

 

通信Logging

注意:加了logging, 所有通信将改为同步,对性能会有伤害。

所有deepspeed.comm下的通信,都将被统计上。

在配置文件里打开:

"comms_logger": {"enabled": true,"verbose": false,"prof_all": true,"debug": false
}

verbose: 边跑,边把发生的通信,一条条写下来。例:

[2022-06-26 01:39:55,722] [INFO] [logging.py:69:log_dist] [Rank 0] rank=0 | comm op: reduce_scatter_tensor | time (ms): 9.46 | msg size: 678.86 MB | algbw (Gbps): 1204.52  | busbw (Gbps): 1129.23
[2022-06-26 01:39:56,470] [INFO] [logging.py:69:log_dist] [Rank 0] rank=0 | comm op: all_gather_into_tensor | time (ms): 0.11 | msg size: 6.0 MB | algbw (Gbps): 954.41  | busbw (Gbps): 894.76
[2022-06-26 01:39:56,471] [INFO] [logging.py:69:log_dist] [Rank 0] rank=0 | comm op: all_gather_into_tensor | time (ms): 0.08 | msg size: 6.0 MB | algbw (Gbps): 1293.47  | busbw (Gbps): 1212.63

algbw: algorithm bandwidth, 发生的通信size/实际通信时间;

busbw: 硬件理论带宽;是个固定值;

algbw如果比busbw小太多,说明糟糕,有待进一步优化;

总结式:deepspeed.comm.log_summary()

Comm. Op            Message Size        Count               Total Latency(ms)   Avg Latency(ms)     tput_avg (Gbps)     busbw_avg (Gbps)
broadcast2.0 KB              146                 11.12               0.08                0.43                0.4198.25 MB            1                   8317.12             8317.12             0.20                0.19
reduce_scatter_tensor678.86 MB           40                  602.29              9.69                1468.06             1376.31

展示通信等待时长:

dist.log_summary(show_straggler=True)

 这么计算的:(一次组播通信里,每个rank的完成时间,减去,所有rank里完成最快的,这些"等待"时间,加和到一起)

straggler = sum(t_collectives - allreduce(t_collectives, MIN))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/349516.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JVM 类加载器的工作原理

JVM 类加载器的工作原理 类加载器&#xff08;ClassLoader&#xff09;是一个用于加载类文件的子系统&#xff0c;负责将字节码文件&#xff08;.class 文件&#xff09;加载到 JVM 中。Java 类加载器允许 Java 应用程序在运行时动态地加载、链接和初始化类。 2. 类加载器的工…

机器学习与数据挖掘知识点总结(二)分类算法

目录 1、什么是数据挖掘 2、为什么要有数据挖掘 3、数据挖掘用在分类任务中的算法 朴素贝叶斯算法 svm支持向量机算法 PCA主成分分析算法 k-means算法 决策树 1、什么是数据挖掘 数据挖掘是从大量数据中发现隐藏在其中的模式、关系和规律的过程。它利用统计学、机器学…

[Shell编程学习路线]——深入理解Shell编程中的变量(理论与实例)

&#x1f3e1;作者主页&#xff1a;点击&#xff01; &#x1f6e0;️Shell编程专栏&#xff1a;点击&#xff01; ⏰️创作时间&#xff1a;2024年6月12日11点40分 &#x1f004;️文章质量&#xff1a;95分 文章目录 ————前言———— 1 自定义变量 &#x1fae0;…

vue聊天发送Emoji表情

在用web端写聊天发送表情的功能中&#xff0c;使用web端有系统自带的unicode表情会出现每端不统一的情况&#xff0c;不好用不能统一&#xff0c;在这里我想到了一个非常好的思路&#xff0c;可以解决这个问题&#xff01; 那就是发送表情用图片的形式呈现&#xff0c;然后发给…

计算机网络 —— 运输层(UDP和TCP)

计算机网络 —— 运输层&#xff08;UDP和TCP&#xff09; UDPTCPUDP和TCP的异同点相同点不同点 我们今天来看运输层的两个重要的协议——UDP和TCP UDP UDP&#xff0c;全称为用户数据报协议&#xff08;User Datagram Protocol&#xff09;&#xff0c;是互联网中一种核心的…

STM32自己从零开始实操05:接口电路原理图

一、TTL 转 USB 驱动电路设计 1.1指路 延续使用芯片 CH340E 。 实物图 实物图 原理图与封装图 1.2数据手册重要信息提炼 1.2.1概述 CH340 是一个 USB 总线的转接芯片&#xff0c;实现 USB 与串口之间的相互转化。 1.2.2特点 支持常用的 MODEM 联络信号 RTS&#xff08;请…

【递归、搜索与回溯】综合练习一

综合练习一 1.找出所有子集的异或总和再求和2.全排列 II3.电话号码的字母组合4.括号生成 点赞&#x1f44d;&#x1f44d;收藏&#x1f31f;&#x1f31f;关注&#x1f496;&#x1f496; 你的支持是对我最大的鼓励&#xff0c;我们一起努力吧!&#x1f603;&#x1f603; 1.找…

Unity射击游戏开发教程:(27)创建带有百分比的状态栏

创建带有弹药数和推进器百分比的状态栏 在本文中,我将介绍如何创建带有分数和百分比文本的常规状态栏。 由于 Ammo Bar 将成为 UI 的一部分,因此我们需要向 Canvas 添加一个空的 GameObject 并将其重命名为 AmmoBar。我们需要一个文本和两个图像对象,它们是 AmmoBar 的父级。…

认识Django框架,使用Django 2024新手创建Django项目,使用编译工具:Pycharm

Django简单介绍 Django 是一个用 Python 编写的开源 web 应用框架&#xff0c;旨在促进快速开发、维护和部署高效、可扩展的 web 应用程序。它是遵循模型-模板-视图&#xff08;MTV&#xff09;设计模式的一个高级框架&#xff0c;尽管有时也被描述为遵循MVC&#xff08;模型-…

Python数据分析与机器学习在医疗诊断中的应用

文章目录 &#x1f4d1;引言一、数据收集与预处理1.1 数据收集1.2 数据预处理 二、特征选择与构建2.1 特征选择2.2 特征构建 三、模型选择与训练3.1 逻辑回归3.2 随机森林3.3 深度学习 四、模型评估与调优4.1 交叉验证4.2 超参数调优 五、模型部署与应用5.1 模型保存与加载5.2 …

Ubuntu基础-vim编辑器

目录 前言: 一. 安装 二. 配置 三. 基本使用 1.使用 Vim 编辑文本文件 2.代码编辑 3.多窗口编辑 四. 总结 前言: Vim 是从 VI 发展出来的一个文本编辑器&#xff0c;具有代码补充、错误跳转等功能&#xff0c;在程序员中被广泛使用。它的设计理念是命令的组合&#xff…

调用华为API实现车牌识别

目录 1.作者介绍2.华为云车牌识别2.1车牌识别技术2.2华为云OCR 3.实验过程3.1获取API密钥3.2Python代码实现3.3实验结果 参考链接 1.作者介绍 袁明懿&#xff0c;男&#xff0c;西安工程大学电子信息学院&#xff0c;2023级研究生 研究方向&#xff1a;机器视觉与人工智能 电子…

全方位·多层次·智能化,漫途水库大坝安全监测方案

党的十九届五中全会提出&#xff0c;到2025年前&#xff0c;完成新出现病险水库的除险加固&#xff0c;配套完善重点小型水库雨水情和安全监测设施&#xff0c;实现水库安全鉴定和除险加固常态化。 加快推进小型水库除险加固。加快构建气象卫星和测雨雷达、雨量站、水文站组成…

基于STM32和人工智能的智能家居监控系统

目录 引言环境准备智能家居监控系统基础代码实现&#xff1a;实现智能家居监控系统 4.1 数据采集模块4.2 数据处理与分析4.3 控制系统4.4 用户界面与数据可视化应用场景&#xff1a;智能家居环境监控与管理问题解决方案与优化收尾与总结 1. 引言 随着智能家居技术的发展&…

【STM32】飞控设计

【一些入门知识】 1.飞行原理 【垂直运动】 当 mg&#xff1e;F1F2F3F4&#xff0c;此时做下降加速飞行 当 mg&#xff1c;F1F2F3F4&#xff0c;此时做升高加速飞行 当 mgF1F2F3F4 &#xff0c;此时垂直上保持匀速飞行。 【偏航飞行】 ω 4 ω 2 ≠ ω 1 ω 3 就会产生水…

maven学习小结

目录结构 maven为项目提供一个标准目录结构 环境配置 下载maven包后解压&#xff0c;配置解压目录的bin到path变量&#xff0c;然后终端mvn -v&#xff0c;有回显则表明maven安装成功 pom POM&#xff0c;Project Object Model&#xff0c;项目对象模型&#xff0c;是一个xm…

MySQL—多表查询—联合查询

一、引言 之前学习了连接查询。现在学习联合查询。 union&#xff1a;联合、联盟 对于union查询&#xff0c;就是把多次查询的结果合并起来&#xff0c;形成一个新的查询结果集 涉及到两个关键字&#xff1a;union 和 union all 注意&#xff1a; union 会把上面两个SQL查询…

人脸匹配——OpenCV

人脸匹配 导入所需的库加载dlib的人脸识别模型和面部检测器读取图片并转换为灰度图比较两张人脸选择图片并显示结果比较图片创建GUI界面运行GUI主循环运行显示全部代码 导入所需的库 cv2&#xff1a;OpenCV库&#xff0c;用于图像处理。 dlib&#xff1a;一个机器学习库&#x…

Python第二语言(十四、高阶基础)

目录 1. 闭包 1.1 使用闭包注意事项 1.2 小结 2. 装饰器&#xff1a;实际上也是一种闭包&#xff1b; 2.1 装饰器的写法&#xff08;闭包写法&#xff09; &#xff1a;基础写法&#xff0c;只是解释装饰器是怎么写的&#xff1b; 2.2 装饰器的语法糖写法&#xff1a;函数…

自动化数据驱动?最全接口自动化测试yaml数据驱动实战

前言 我们在做自动化测试的时候&#xff0c;通常会把配置信息和测试数据存储到特定的文件中&#xff0c;以实现数据和脚本的分离&#xff0c;从而提高代码的易读性和可维护性&#xff0c;便于后期优化。 而配置文件的形式更是多种多样&#xff0c;比如&#xff1a;ini、yaml、…