【算法专题--链表】反转链表II--高频面试题(图文详解,小白一看就会!!!)

目录

一、前言

二、题目描述 

三、解题方法

⭐迭代法 --- 带哨兵位(头节点) 

🥝 什么是哨兵位头节点?

🍍 解题思路 

四、总结与提炼

五、共勉 


一、前言

       反转链表II这道题,可以说是--链表专题--,最经典的一道题,也是在面试中频率最高的一道题目,通常在面试中,面试官可能会从多个方面考察这道题目,所以大家需要对这道题目非常熟悉哦!!
      本片博客就来详细的讲讲解一下 反转链表II 的实现方法,让我们的面试变的更加顺利!!!

二、题目描述 

      给你单链表的头指针 head 和两个整数 left 和 right ,其中 left <= right 。请你反转从位置 left 到位置 right 的链表节点,返回 反转后的链表 

 三、解题方法

⭐迭代法 --- 带哨兵位(头节点) 

🥝 什么是哨兵位头节点?

 首先,先来了解一下什么是  哨兵位---头节点 

  • 它是一个附加的链表结点,该 结点 作为第一个节点它的数据域不存储任何东西,只是为了操作的方便而引入的。
  • 也就是说,如果一个链表有哨兵节点的话,那么链表表的第一个元素应该是链表的第二个节点。

 哨兵位 --- 头节点的作用: 

  •  比如向链表中插入一个节点,对于没有哨兵位单链表当待插入的节点为链表的第一个节点,由于没有前驱,需要进行特殊处理,从而代码的复杂性增加。
  • 如果有哨兵位头节点,则第一个节点的处理方式与其它节点相同,可以统一进行处理

🍍 解题思路 

  •  这道题,其实就是之前讲过的 ---- 反转链表 --- 的升级版
  • 如果我们把要 反转的区间 抽取出来,看作一个独立的链表,那么其反转的过程与反转链表的过程是一样的。 

  •  而现在我们比 反转链表 多了一步是,我们要把抽取出来反转后的区间在拼接回去

 为了把反转后的局部链表拼接回去,我们需要知道四个定位节点:

  • reversePre:   反转区间的前一个节点
  • reverseHead:反转区间的头节点
  • reverseTail:   反转区间的尾节点
  • reverseNext: 反转区间的下一个节点

我们要把反转后的链表拼接回去,实际上就是让 reversePrenext指针 指向 reverseTail,让reverseHeadnext指针 指向 reverseNext。

  • 题目中的 left right 的数值分别表示第几个节点,我们可以使用一个变量 count 来统计当前节点是第几个节点,初始值为1
  • 当反转区间的头节点为 head 时,head 之前没有节点了,为了统一,我们在头节点之前引入哨兵位头节点 --- pre_head

  • 我们从 哨兵位 头节点开始依次遍历节点,直到 count=left 时,刚好到达 reversePre

  •  然后从 reversePre 的下一个节点开始,即 reverseHead,依次反转局部链表,直到 count > right

  •  开始反转局部链表,采用三指针迭代法,可以和之前的 反转链表 一样

  •  最后将重定向 reversePre 的 next指针 和 reverseHead的 next,即将反转后的局部链表重新拼接。

  •  最后,返回 哨兵位头节点 的 next 指针

 代码:

class Solution {
public:ListNode* reverseBetween(ListNode* head, int left, int right) {// 创建一个 哨兵位的 头节点 ,并初始化 值域为 0// 并将 其的 next 指向 head ---- >  pre_head->next = head;ListNode* pre_head = new ListNode(0 , head);// 定义反转区间 头节点的上一个节点 ,初始先这只为 哨兵尾--preListNode* reversePre = pre_head;// 节点编号 --- 开始指向 哨兵位 初始值为 1int count = 1;// 找到 反转区间 的头节点 的上一个节点// 注意 left 是从 head 开始计算的哦!while(count < left){reversePre = reversePre->next;count++;}// 获取 反转区间的 头节点ListNode* reverseHead = reversePre->next;// 反转区间 [left , right]ListNode* last = nullptr;ListNode* cur = reverseHead;ListNode* next;while(count<=right){next = cur->next;cur->next = last;last = cur;cur = next;count++;}// 重新连接反转后的节点reversePre->next = last;  // 反转区间前一个节点应该连接到反转区间的最后一个节点,即当前的lastreverseHead->next = cur;  // 反转区间的头节点应该连接到反转区间的下一个节点,即当前的next// 返回哨兵尾的 下一位return pre_head->next;}
};

  四、总结与提炼

        最后我们来总结一下本文所介绍的内容,本文讲解来一道力扣中有关链表反转的题目,这道题目是校招笔试面试中有关链表章节非常高频的一道题目大家下去一定要自己再画画图,分析一下,把这段代码逻辑自己实现一遍,才能更好地掌握

五、共勉 

       以下就是我对 反转链表II 的理解,如果有不懂和发现问题的小伙伴,请在评论区说出来哦,同时我还会继续更新对 链表专题 的理解,请持续关注我哦!!! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/350048.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RAG工作流在高效信息检索中的应用

介绍 RAG&#xff08;Retrieval Augmented Generation&#xff09;是一种突破知识限制、整合外部数据并增强上下文理解的方法。 由于其高效地整合外部数据而无需持续微调&#xff0c;RAG的受欢迎程度正在飙升。 让我们来探索RAG如何克服LLM的挑战&#xff01; LLM知识限制大…

【WEB前端2024】3D智体编程:乔布斯3D纪念馆-第38课-密室逃脱-3D互动剧情

【WEB前端2024】3D智体编程&#xff1a;乔布斯3D纪念馆-第38课-密室逃脱 使用dtns.network德塔世界&#xff08;开源的智体世界引擎&#xff09;&#xff0c;策划和设计《乔布斯超大型的开源3D纪念馆》的系列教程。dtns.network是一款主要由JavaScript编写的智体世界引擎&…

Flutter - Material3适配

demo 地址: https://github.com/iotjin/jh_flutter_demo 代码不定时更新&#xff0c;请前往github查看最新代码 Flutter - Material3适配 对比图具体实现一些组件的变化 代码实现Material2的ThemeDataMaterial3的ThemeData Material3适配官方文档 flutter SDK升级到3.16.0之后 …

C# WinForm —— 35 StatusStrip 介绍

1. 简介 状态栏 StatusStrip&#xff0c;默认在软件的最下方&#xff0c;用于显示系统时间、版本、进度条、账号、角色信息、操作位置信息等 可以在状态栏中添加的控件类型有&#xff1a;StatusLabel、ProgressBar、DropDownButton、SplitButton 2. 属性 属性解释(Name)控…

utm投影

一 概述 UTM (Universal Transverse Mercator)坐标系是由美国军方在1947提出的。虽然我们仍然将其看作与“高斯&#xff0d;克吕格”相似的坐标系统&#xff0c;但实际上UTM采用了网格的分带&#xff08;或分块&#xff09;。除在美国本土采用Clarke 1866椭球体以外&#xff0c…

树莓派等Linux开发板上使用 SSD1306 OLED 屏幕,bullseye系统 ubuntu,debian

Raspberry Pi OS Bullseye 最近发布了,随之而来的是许多改进,但其中大部分都在引擎盖下。没有那么多视觉差异,最明显的可能是新的默认桌面背景,现在是大坝或湖泊上的日落。https://www.the-diy-life.com/add-an-oled-stats-display-to-raspberry-pi-os-bullseye/ 通过这次操…

【GD32】 TIMER通用定时器学习+PWM输出占空比控制LED

扩展&#xff1a;对PWM波形的输出进行捕获 目录 一、简介二、具体功能描述1、时钟源的选择&#xff1a;2、预分频器&#xff1a;3、计数模式&#xff1a;向上计数模式&#xff1a;向下计数模式&#xff1a;中央对齐模式&#xff1a; 4、捕获/比较通道 输入捕获模式 输出比…

前端问题整理

Vue vue mvvm&#xff08;Model-View-ViewModel&#xff09;架构模式原理 Model 是数据层&#xff0c;即 vue 实例中的数据View 是视图层&#xff0c; 即 domViewModel&#xff0c;即连接Model和Vue的中间层&#xff0c;Vue实例就是ViewModelViewModel 负责将 Model 的变化反映…

TCGAbiolinks包学习

TCGAbiolinks 写在前面学习目的GDCquery GDCdownload GDC prepare中间遇到的报错下载蛋白质数据 写在前面 由于别人提醒我TCGA的数据可以利用TCGAbiolinks下载并处理&#xff0c;所以我决定阅读该包手册&#xff0c;主要是该包应该是有更新的&#xff0c;我看手册进行更新了&…

【CS.PL】Lua 编程之道: 简介与环境设置 - 进度8%

1 初级阶段 —— 简介与环境设置 文章目录 1 初级阶段 —— 简介与环境设置1.1 什么是 Lua&#xff1f;特点?1.2 Lua 的应用领域1.3 安装 Lua 解释器1.3.1 安装1.3.2 Lua解释器的结构 1.4 Lua执行方式1.4.0 程序段1.4.1 使用 Lua REPL&#xff08;Read-Eval-Print Loop&#x…

LAMP部署及应用

LAMP架构 LAMP架构是指一种常用的网站开发架构&#xff0c;它由以下几个组件组成&#xff1a; Linux操作系统&#xff1a;作为服务器的操作系统&#xff0c;LAMP架构通常使用Linux作为操作系统&#xff0c;因为Linux通常被认为是稳定和安全的。 Apache HTTP服务器&#xff1a…

iOS ReactiveCocoa MVVM

学习了在MVVM中如何使用RactiveCocoa&#xff0c;简单的写上一个demo。重点在于如何在MVVM各层之间使用RAC的信号来更方便的在各个层之间进行响应式数据交互。 demo需求&#xff1a;一个登录界面(登录界面只有账号和密码都有输入&#xff0c;登录按钮才可以点击操作)&#xff0…

AI模型部署:Triton+TensorRT部署Bert文本向量化服务实践

前言 本篇介绍以Triton作为推理服务器&#xff0c;TensorRT作为推理后端&#xff0c;部署句嵌入向量模型m3e-base的工程方案和实现&#xff0c;句嵌入模型本质上是Bert结构&#xff0c;本案例可以推广到更一般的深度学习模型部署场景。 内容摘要 推理服务器和推理后端介绍Ten…

【Numpy】numpy.r_用法

numpy.r_[字符串, 数组, 数组] numpy.r_的这三个整数默认值是0,1,-1 numpy.c_就是numpy.r_在三个整数是-1,2,0时的特例&#xff0c;因为常用&#xff0c;所以单独拎出来了。第一个参数-1指沿最后一个轴(维度)连接 有一个shape(2, 3, 4)的数组 np.random.randint(low0, high1…

文章MSM_metagenomics(一):介绍

介绍 欢迎大家关注全网生信学习者系列&#xff1a; WX公zhong号&#xff1a;生信学习者Xiao hong书&#xff1a;生信学习者知hu&#xff1a;生信学习者CDSN&#xff1a;生信学习者2 用于复现Huang et al. [huang2024establishment]研究分析的计算工作流程&#xff0c;所有复…

LDR6020显示器应用:革新连接体验,引领未来显示技术

一、引言 随着科技的飞速发展&#xff0c;显示器作为信息展示的重要载体&#xff0c;其性能和应用场景不断得到拓展。特别是在办公、娱乐以及物联网等领域&#xff0c;用户对显示器的需求越来越多样化。在这一背景下&#xff0c;LDR6020显示器的出现&#xff0c;以其卓越的性能…

STM32硬件接口I2C应用(基于HMC5883L)

目录 概述 1 STM32Cube控制配置I2C 1.1 I2C参数配置 1.2 使用STM32Cube产生工程 2 HAL库函数介绍 2.1 初始化函数 2.2 写数据函数 2.3 读数据函数 3 认识HMC5883L 3.1 HMC5883L功能介绍 3.2 HMC5883L的寄存器 4 HMC5883L驱动程序实现 4.1 驱动函数实现 4.2 完整驱…

QT调用vs2019生成的c++动态库

QT调用vs2019生成的c动态库 dll库的创建方法&#xff1a; VS2019创建c动态链接库dll与调用方法-CSDN博客 加减法示范&#xff1a; 头文件 // 下列 ifdef 块是创建使从 DLL 导出更简单的 // 宏的标准方法。此 DLL 中的所有文件都是用命令行上定义的 DLL3_EXPORTS // 符号编…

解决方案︱视频孪生智慧高速解决方案

系统概述 在交通强国战略的指导下&#xff0c;我国政府高度重视以数字化为核心的智慧高速公路建设与发展。2023年9月&#xff0c;交通运输部印发了《交通运输部关于推进公路数字化转型加快智慧公路建设发展的意见》&#xff0c;强调到2035年&#xff0c;全面实现公路数字化转型…

【C++】和【预训练模型】实现【机器学习】【图像分类】的终极指南

目录 &#x1f497;1. 准备工作和环境配置&#x1f495; &#x1f496;安装OpenCV&#x1f495; &#x1f496;安装Dlib&#x1f495; 下载并编译TensorFlow C API&#x1f495; &#x1f497;2. 下载和配置预训练模型&#x1f495; &#x1f496;2.1 下载预训练的ResNet…