2024最新最全【AIGC】学习零基础入门到精通,看完这一篇就够了!

这个文案就是由AI生成的哦!!!!
在这里插入图片描述

AIGC(AI-Generated Content)

即人工智能生成内容,是指利用人工智能技术来创造各种形式的内容,包括文字、图像、视频、音频和游戏等。与专业生成内容(PGC)和用户生成内容(UGC)相对应,AIGC代表着内容生产方式的演进,其生产速度以指数级增长。

为什么要学习AIGC?

根据猎聘大数据研究院发布的《AIGC就业趋势大数据报告2023》,AIGC领域的新发职位(人才需求)超过AI领域,且AIGC职位的平均年薪高于AI领域。AIGC职位分布在IT/互联网/游戏、汽车、电子/通信/半导体等行业,其中科研技术/商务服务行业、能源/化工/环保、IT/互联网/游戏行业的AIGC新发职位增长最快。

AIGC领域的热招职位包括算法工程师、自然语言处理(NLP)专家、产品经理等。此外,AIGC对高学历的需求高于AI领域,且AIGC人才的薪资水平也较高。

如何学习AIGC?

学习AIGC可以分为几个阶段,每个阶段都涉及到不同的技能和工具。

**第一阶段(30天)**主要学习AI-GPT的深度应用,包括GPT的定义、应用场景、与其他AI技术的对比、GPT的高级角色扮演和实操练习等。

**第二阶段(30天)**专注于AI绘画的进阶实战,学习AI绘画工具的使用、组合应用、设计技巧等。

**第三阶段(30天)**则转向AI视频制作的高段位技能,包括视频制作方案、工具实操、美学风格、特效处理等。

**第四阶段(20天)**是AI虚拟数字人课程,学习如何创建和运用AI数字人。

**第五阶段(45天以上)**则是AIGC多渠道变现课程,学习如何在新媒体、电子商务等领域应用AIGC技术进行引流和带货变现。

学习AIGC是一个挑战性的过程,但也是一个提升自我、开拓职业机会的途径。通过系统的学习和实践,可以逐步掌握AIGC技能,并在相关领域取得竞争优势。

大模型AGI学习包

资料目录

  1. 成长路线图&学习规划
  2. 配套视频教程
  3. 实战LLM
  4. 人工智能比赛资料
  5. AI人工智能必读书单
  6. 面试题合集

《人工智能\大模型入门学习大礼包》,可以扫描下方二维码免费领取!

在这里插入图片描述

1.成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
在这里插入图片描述

2.视频教程
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,其中一共有21个章节,每个章节都是当前板块的精华浓缩。

在这里插入图片描述

3.LLM
大家最喜欢也是最关心的LLM(大语言模型)

在这里插入图片描述

《人工智能\大模型入门学习大礼包》,可以扫描下方二维码免费领取!
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/350050.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

图解Transformer学习笔记

教程是来自https://github.com/datawhalechina/learn-nlp-with-transformers/blob/main/docs/ 图解Transformer Attention为RNN带来了优点,那么有没有一种神经网络结构直接基于Attention构造,而不再依赖RNN、LSTM或者CNN的结构,这就是Trans…

【算法专题--链表】反转链表II--高频面试题(图文详解,小白一看就会!!!)

目录 一、前言 二、题目描述 三、解题方法 ⭐迭代法 --- 带哨兵位(头节点) 🥝 什么是哨兵位头节点? 🍍 解题思路 四、总结与提炼 五、共勉 一、前言 反转链表II这道题,可以说是--链表专题--&am…

RAG工作流在高效信息检索中的应用

介绍 RAG(Retrieval Augmented Generation)是一种突破知识限制、整合外部数据并增强上下文理解的方法。 由于其高效地整合外部数据而无需持续微调,RAG的受欢迎程度正在飙升。 让我们来探索RAG如何克服LLM的挑战! LLM知识限制大…

【WEB前端2024】3D智体编程:乔布斯3D纪念馆-第38课-密室逃脱-3D互动剧情

【WEB前端2024】3D智体编程:乔布斯3D纪念馆-第38课-密室逃脱 使用dtns.network德塔世界(开源的智体世界引擎),策划和设计《乔布斯超大型的开源3D纪念馆》的系列教程。dtns.network是一款主要由JavaScript编写的智体世界引擎&…

Flutter - Material3适配

demo 地址: https://github.com/iotjin/jh_flutter_demo 代码不定时更新,请前往github查看最新代码 Flutter - Material3适配 对比图具体实现一些组件的变化 代码实现Material2的ThemeDataMaterial3的ThemeData Material3适配官方文档 flutter SDK升级到3.16.0之后 …

C# WinForm —— 35 StatusStrip 介绍

1. 简介 状态栏 StatusStrip,默认在软件的最下方,用于显示系统时间、版本、进度条、账号、角色信息、操作位置信息等 可以在状态栏中添加的控件类型有:StatusLabel、ProgressBar、DropDownButton、SplitButton 2. 属性 属性解释(Name)控…

utm投影

一 概述 UTM (Universal Transverse Mercator)坐标系是由美国军方在1947提出的。虽然我们仍然将其看作与“高斯-克吕格”相似的坐标系统,但实际上UTM采用了网格的分带(或分块)。除在美国本土采用Clarke 1866椭球体以外&#xff0c…

树莓派等Linux开发板上使用 SSD1306 OLED 屏幕,bullseye系统 ubuntu,debian

Raspberry Pi OS Bullseye 最近发布了,随之而来的是许多改进,但其中大部分都在引擎盖下。没有那么多视觉差异,最明显的可能是新的默认桌面背景,现在是大坝或湖泊上的日落。https://www.the-diy-life.com/add-an-oled-stats-display-to-raspberry-pi-os-bullseye/ 通过这次操…

【GD32】 TIMER通用定时器学习+PWM输出占空比控制LED

扩展:对PWM波形的输出进行捕获 目录 一、简介二、具体功能描述1、时钟源的选择:2、预分频器:3、计数模式:向上计数模式:向下计数模式:中央对齐模式: 4、捕获/比较通道 输入捕获模式 输出比…

前端问题整理

Vue vue mvvm(Model-View-ViewModel)架构模式原理 Model 是数据层,即 vue 实例中的数据View 是视图层, 即 domViewModel,即连接Model和Vue的中间层,Vue实例就是ViewModelViewModel 负责将 Model 的变化反映…

TCGAbiolinks包学习

TCGAbiolinks 写在前面学习目的GDCquery GDCdownload GDC prepare中间遇到的报错下载蛋白质数据 写在前面 由于别人提醒我TCGA的数据可以利用TCGAbiolinks下载并处理,所以我决定阅读该包手册,主要是该包应该是有更新的,我看手册进行更新了&…

【CS.PL】Lua 编程之道: 简介与环境设置 - 进度8%

1 初级阶段 —— 简介与环境设置 文章目录 1 初级阶段 —— 简介与环境设置1.1 什么是 Lua?特点?1.2 Lua 的应用领域1.3 安装 Lua 解释器1.3.1 安装1.3.2 Lua解释器的结构 1.4 Lua执行方式1.4.0 程序段1.4.1 使用 Lua REPL(Read-Eval-Print Loop&#x…

LAMP部署及应用

LAMP架构 LAMP架构是指一种常用的网站开发架构,它由以下几个组件组成: Linux操作系统:作为服务器的操作系统,LAMP架构通常使用Linux作为操作系统,因为Linux通常被认为是稳定和安全的。 Apache HTTP服务器&#xff1a…

iOS ReactiveCocoa MVVM

学习了在MVVM中如何使用RactiveCocoa,简单的写上一个demo。重点在于如何在MVVM各层之间使用RAC的信号来更方便的在各个层之间进行响应式数据交互。 demo需求:一个登录界面(登录界面只有账号和密码都有输入,登录按钮才可以点击操作)&#xff0…

AI模型部署:Triton+TensorRT部署Bert文本向量化服务实践

前言 本篇介绍以Triton作为推理服务器,TensorRT作为推理后端,部署句嵌入向量模型m3e-base的工程方案和实现,句嵌入模型本质上是Bert结构,本案例可以推广到更一般的深度学习模型部署场景。 内容摘要 推理服务器和推理后端介绍Ten…

【Numpy】numpy.r_用法

numpy.r_[字符串, 数组, 数组] numpy.r_的这三个整数默认值是0,1,-1 numpy.c_就是numpy.r_在三个整数是-1,2,0时的特例,因为常用,所以单独拎出来了。第一个参数-1指沿最后一个轴(维度)连接 有一个shape(2, 3, 4)的数组 np.random.randint(low0, high1…

文章MSM_metagenomics(一):介绍

介绍 欢迎大家关注全网生信学习者系列: WX公zhong号:生信学习者Xiao hong书:生信学习者知hu:生信学习者CDSN:生信学习者2 用于复现Huang et al. [huang2024establishment]研究分析的计算工作流程,所有复…

LDR6020显示器应用:革新连接体验,引领未来显示技术

一、引言 随着科技的飞速发展,显示器作为信息展示的重要载体,其性能和应用场景不断得到拓展。特别是在办公、娱乐以及物联网等领域,用户对显示器的需求越来越多样化。在这一背景下,LDR6020显示器的出现,以其卓越的性能…

STM32硬件接口I2C应用(基于HMC5883L)

目录 概述 1 STM32Cube控制配置I2C 1.1 I2C参数配置 1.2 使用STM32Cube产生工程 2 HAL库函数介绍 2.1 初始化函数 2.2 写数据函数 2.3 读数据函数 3 认识HMC5883L 3.1 HMC5883L功能介绍 3.2 HMC5883L的寄存器 4 HMC5883L驱动程序实现 4.1 驱动函数实现 4.2 完整驱…

QT调用vs2019生成的c++动态库

QT调用vs2019生成的c动态库 dll库的创建方法: VS2019创建c动态链接库dll与调用方法-CSDN博客 加减法示范: 头文件 // 下列 ifdef 块是创建使从 DLL 导出更简单的 // 宏的标准方法。此 DLL 中的所有文件都是用命令行上定义的 DLL3_EXPORTS // 符号编…