GLOW-TTS

我首先需要理解用户的指令,用户希望我翻译文章的3.1节“Training and Inference Procedures”部分。为了完成这个任务,我需要仔细阅读文章的3.1节,理解其中的技术细节和概念,然后将这些内容准确地翻译成中文。

在阅读3.1节时,我注意到文章首先介绍了Glow-TTS模型的目标,即建模梅尔频谱图的条件分布,并通过流式解码器进行变换。文章给出了计算数据对数似然性的公式,这是理解模型核心机制的关键,我需要确保这个公式的翻译准确无误。

接下来,文章解释了如何通过文本编码器和先验分布来参数化数据和先验分布,并引入了对齐函数的概念。对齐函数是Glow-TTS模型的关键组成部分,它负责建立文本和语音潜在表示之间的单调映射关系。我需要仔细理解对齐函数的定义和作用,并将其准确地翻译出来。

然后,文章阐述了模型的训练目标,即最大化数据的对数似然性,并提出了将这个复杂的优化问题分解为两个子问题的策略:搜索最可能的单调对齐和更新模型参数。动态规划算法被用来解决对齐搜索问题,文章提到了单调对齐搜索(MAS)算法,并给出了一个递归公式来计算部分对齐的最大对数似然性。我需要理解这个递归公式的含义,并将其正确地翻译成中文。

在翻译过程中,我还需要注意文章中提到的图表,例如图1和图2。图1展示了Glow-TTS的训练和推理流程,图2则解释了单调对齐搜索的过程。为了使翻译后的内容更清晰易懂,我需要在适当的位置插入对这些图表的引用说明,例如“如图1所示”或“如图2所示”。这样可以帮助读者更好地理解文章的内容。

最后,文章还提到了在推理阶段如何使用持续时间预测器来估计对齐,并生成梅尔频谱图。这部分内容也需要准确地翻译出来,以确保整个3.1节的翻译完整性。

在完成初稿翻译后,我会重新审阅一遍翻译内容,检查是否准确传达了原文的意思,技术术语是否使用得当,语句是否流畅自然,并且确保图表引用说明的位置合适。如果发现有翻译错误或不准确的地方,我会及时进行修改和完善,力求最终的翻译结果既忠实于原文,又易于中文读者理解。通过以上思考步骤,我就可以生成对3.1节“Training and Inference Procedures”的准确翻译。

3.1 训练和推理过程

Glow-TTS通过流式解码器 f d e c : z → x f_{dec}:z\rightarrow x fdec:zx将条件先验分布 P Z ( z ∣ c ) P_{Z}(z|c) PZ(zc)转换为梅尔频谱图的分布,从而建模梅尔频谱图 P X ( x ∣ c ) P_{X}(x|c) PX(xc)的条件分布。通过变量替换,我们可以计算数据的精确对数似然:

log ⁡ P X ( x ∣ c ) = log ⁡ P Z ( z ∣ c ) + log ⁡ ∣ det ⁡ ∂ f d e c − 1 ( x ) ∂ x ∣ \log P_{X}(x|c)=\log P_{Z}(z|c)+\log\left|\det\frac{\partial f_{dec}^{-1}(x)}{\partial x}\right| logPX(xc)=logPZ(zc)+log detxfdec1(x)

我们使用网络参数 θ \theta θ和对齐函数 A A A对数据和先验分布进行参数化。先验分布 P Z P_{Z} PZ是各向同性的多元高斯分布,其所有统计量 μ \mu μ σ \sigma σ均由文本编码器 f enc f_{\text{enc}} fenc获得。文本编码器将文本条件 c = c 1 : T text c=c_{1: T_{\text{text}}} c=c1:Ttext映射到统计量 μ = μ 1 : T text \mu=\mu_{1: T_{\text{text}}} μ=μ1:Ttext σ = σ 1 : T text \sigma=\sigma_{1: T_{\text{text}}} σ=σ1:Ttext,其中 T text T_{\text{text}} Ttext表示文本输入的长度。在我们的公式中,对齐函数 A A A表示从语音的潜在表示索引到 f enc f_{\text{enc}} fenc统计量的索引的映射:如果 z j ∼ N ( z j ; μ i , σ i ) z_{j}\sim N\left(z_{j};\mu_{i},\sigma_{i}\right) zjN(zj;μi,σi),则 A ( j ) = i A(j)=i A(j)=i。我们假设对齐函数 A A A是单调和满射的,以确保Glow-TTS不会跳过或重复文本输入。然后,先验分布可以表示为:

log ⁡ P Z ( z ∣ c ; θ , A ) = ∑ j = 1 T m e l log ⁡ N ( z j ; μ A ( j ) , σ A ( j ) ) \begin{align*}\log P_{Z}(z|c;\theta,A)=\sum_{j=1}^{T_{mel}}\log\mathcal{N}(z_{j};\mu_{A(j)},\sigma_{A(j)})\end{align*} logPZ(zc;θ,A)=j=1TmellogN(zj;μA(j),σA(j))

其中 T m e l T_{m e l} Tmel表示输入梅尔频谱图的长度。

我们的目标是找到参数 θ \theta θ和对齐 A A A,以最大化数据的对数似然,如方程3所示。然而,找到全局解在计算上是不可行的。为了解决这个问题,我们通过分解目标为两个后续问题来减少参数和对齐的搜索空间:(i) 根据当前参数 θ \theta θ搜索最可能的单调对齐 A ∗ A^{*} A,如方程4所示;(ii) 更新参数 θ \theta θ以最大化对数似然 log ⁡ p X ( x ∣ c ; θ , A ∗ ) \log p_{X}\left(x\mid c;\theta, A^{*}\right) logpX(xc;θ,A)。在实践中,我们使用迭代方法处理这两个问题。在每个训练步骤中,我们首先找到 A ∗ A^{*} A,然后使用梯度下降更新 θ \theta θ。这种迭代过程实际上是广泛使用的Viterbi训练的一个例子,它最大化最可能隐藏对齐的对数似然。修改后的目标不能保证方程3的全局解,但它仍然提供了全局解的良好下限。

max ⁡ θ , A L ( θ , A ) = max ⁡ θ , A log ⁡ P X ( x ∣ c ; A , θ ) \max_{\theta,A}L(\theta,A)=\max_{\theta,A}\log P_{X}(x|c;A,\theta) θ,AmaxL(θ,A)=θ,AmaxlogPX(xc;A,θ)

A ∗ = arg ⁡ max ⁡ A log ⁡ P X ( x ∣ c ; A , θ ) = arg ⁡ max ⁡ A ∑ j = 1 T m e l log ⁡ N ( z j ; μ A ( j ) , σ A ( j ) ) \begin{align*} A^{*}&=\underset{A}{\arg\max}\log P_{X}(x|c;A,\theta)=\underset{A}{\arg\max}\sum_{j=1}^{T_{mel}}\log\mathcal{N}(z_{j};\mu_{A(j)},\sigma_{A(j)})\end{align*} A=AargmaxlogPX(xc;A,θ)=Aargmaxj=1TmellogN(zj;μA(j),σA(j))

为了在第3.2节中描述的推理阶段估计最可能的单调对齐 A ∗ A^{*} A,我们还训练了持续时间预测器 f d u r f_{d u r} fdur以匹配从对齐 A ∗ A^{*} A计算的持续时间标签。遵循FastSpeech[20]的架构,我们将持续时间预测器附加在文本编码器的顶部,并在log域中使用均方误差损失(MSE)进行训练。我们还应用了停止梯度算子 s g [ ⋅ ] sg[\cdot] sg[],以在反向传播中去除输入的梯度,以避免影响最大似然目标。持续时间预测器的损失在方程6中描述。

d i = ∑ j = 1 T m e l 1 A ∗ ( j ) = i , i = 1 , . . . , T t e x t \begin{align*} d_{i}&=\sum_{j=1}^{T_{mel}}1_{A^{*}(j)=i},i=1,...,T_{text}\end{align*} di=j=1Tmel1A(j)=i,i=1,...,Ttext

L d u r = M S E ( f d u r ( s g [ f e n c ( c ) ] ) , d ) \begin{align*} L_{dur}&=MSE(f_{dur}(sg[f_{enc}(c)]),d)\end{align*} Ldur=MSE(fdur(sg[fenc(c)]),d)

在推理过程中,如图1b所示,文本编码器和持续时间预测器预测先验分布和的对齐统计量。然后,从先验分布中采样一个潜在变量,并通过流式解码器将其转换为梅尔频谱图。

为了搜索最可能的单调对齐 A ∗ A^{*} A,我们引入了一种对齐搜索算法,称为单调对齐搜索(MAS),在第3.2节中描述。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/35090.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python 鼠标轨迹算法 - 防止游戏检测

一.简介 鼠标轨迹算法是一种模拟人类鼠标操作的程序,它能够模拟出自然而真实的鼠标移动路径。 鼠标轨迹算法的底层实现采用C/C语言,原因在于C/C提供了高性能的执行能力和直接访问操作系统底层资源的能力。 鼠标轨迹算法具有以下优势: 模拟…

C++11 lambda表达式、包装器、Bind绑定

Hello!大家早上中午晚上好!!今天来复习C11三个新加的特性!! 一、lambda 表达式 1.1什么是lambda表达式? 语法:[捕捉列表](参数列表)->返回值{函数体}; …

计算机网络:(二)计算机网络在我国发展与网络类别与性能 (附带图谱更好对比理解)

计算机网络:(二)计算机网络在我国发展与网络类别和性能 前言一、计算机网络在我国的发展二、计算机网络的类别1. 计算机网络的定义2. 不同类别的计算机网络(1)按覆盖范围分类(2)按传输技术分类…

CoreData 调试警告:多个 NSEntityDescriptions 声明冲突的解决

概述 目前在苹果生态 App 的开发中,CoreData 数据库仍然是大部分中小应用的优先之选。不过,运行时 CoreData 常常产生各种“絮絮叨叨”的警告不禁让初学的秃头小码农们云里雾里。 这不,对于下面这一大段 CoreData 警告,大家是否一…

解决QT_Debug 调试信息不输出问题

方式1 &#xff1a;手动通过添加环境变量解决 ->使用命令&#xff1a; QT_LOGGING_TO_CONSOLE1 qtcreator启动 ->如若还未输出qDebug调试信息 则在程序中引<QLoggingCategory>包 #include <QLoggingCategory> ->在程序入口添加 QLoggingCategory::defa…

【CF】Day9——Codeforces Round 953 (Div. 2) BCD

B. New Bakery 题目&#xff1a; 思路&#xff1a; 被标签害了&#xff0c;用什么二分&#xff08; 很简单的思维题&#xff0c;首先如果a > b&#xff0c;那么全选a就行了&#xff0c;还搞啥活动 否则就选 b - a 天来搞活动&#xff0c;为什么&#xff1f; 首先如果我…

[MAVEN][经验总结]MAVEN_HOME和M2_HOME的配置建议

前言 MAVEN_HOME和M2_HOME都是maven的环境变量&#xff0c;要配置哪个&#xff0c;与maven版本有关&#xff0c;我在实操过程中遇到相关的问题&#xff0c;现记录如下。 MAVEN_HOME和M2_HOME的区别 MAVEN_HOME 和 M2_HOME 本质上是同一个作用的环境变量&#xff0c;它们的区…

力扣Hot100——169. 多数元素

解法1&#xff1a;使用HashMap 将nums数组映射到HashMap中&#xff0c;键为nums的值&#xff0c;值为nums中值的数量&#xff1b; 然后遍历哈希表&#xff0c;返回值最大的键 class Solution {private Map<Integer, Integer> countNums(int[] nums) {Map<Integer, Int…

EasyRTC嵌入式音视频通话SDK:微信生态支持、轻量化架构与跨平台兼容性(Linix/Windows/ARM/Android/iOS/LiteOS)

随着WebRTC技术的不断发展&#xff0c;实时音视频通信在各个领域的应用越来越广泛。EasyRTC嵌入式音视频通话SDK作为一款基于WebRTC技术的实时通信解决方案&#xff0c;凭借其强大的功能和灵活的集成能力&#xff0c;受到了越来越多开发者的关注。 一、系统架构设计 纯C语言开…

QuickAPI:一键将 Excel 数据转为数据库表

在开发和数据管理中&#xff0c;将 Excel 数据快速导入数据库是一项常见需求&#xff0c;但手动建表和导入的过程往往让人头疼。 QuickAPI 作为一款高效的统一数据服务平台&#xff0c;提供了一键将 Excel 数据转为数据库表的功能&#xff0c;极大简化了操作流程。本文将以技术…

【MySQL】多表查询(笛卡尔积现象,联合查询、内连接、左外连接、右外连接、子查询)-通过练习快速掌握法

在DQL的基础查询中&#xff0c;我们已经学过了多表查询的一种&#xff1a;联合查询&#xff08;union&#xff09;。本文我们将系统的讲解多表查询。 笛卡尔积现象 首先&#xff0c;我们想要查询emp表和stu表两个表&#xff0c;按照我们之前的知识栈&#xff0c;我们直接使用…

JavaScript如何做类型转换

一、类型转换 二、补充 console.log(1 "2" "2"); // 122 console.log(1 "2" "2"); // 32 console.log(1 -"1" "2"); // 02 console.log("1" "1" "2"); // 112 consol…

华为中小型企业项目案例

实验目的(1) 熟悉华为交换机和路由器的应用场景 (2) 掌握华为交换机和路由器的配置方法 实验拓扑实验拓扑如图所示。 华为中小型企业项目案例拓扑图 实验配置市场部和技术部的配置创建VLANLSW1的配置 [LSW1]vlan batch 10 20 [LSW1]q…

【PyTorch][chapter-35][MLA]

前言&#xff1a; MLA&#xff08;Multi-head Latent Attention&#xff0c;多头潜在注意力&#xff09;旨在提高推理效率和降低计算资源的消。MLA的核心思想在于通过信息转移来优化KV缓存的使用 MLA的技术特点主要包括&#xff1a; KV压缩与潜在变量&#xff1a;将键&#xff…

Spring Cloud 中的服务注册与发现: Eureka详解

1. 背景 1.1 问题描述 我们如果通过 RestTamplate 进行远程调用时&#xff0c;URL 是写死的&#xff0c;例如&#xff1a; String url "http://127.0.0.1:9090/product/" orderInfo.getProductId(); 当机器更换或者新增机器时&#xff0c;这个 URL 就需要相应地变…

微服务存在的问题及解决方案

微服务存在的问题及解决方案 1. 存在问题 1.1 接口拖慢 因为一个接口在并发时&#xff0c;正好执行时长又比较长&#xff0c;那么当前这个接口占用过多的 Tomcat 连接&#xff0c;导致其他接口无法即时获取到 Tomcat 连接来完成请求&#xff0c;导致接口拖慢&#xff0c;甚至…

centos 安装pip时报错 Cannot find a valid baseurl for repo: centos-sclo-rh/x86_64

centos 安装pip时报错 [rootindex-es app-ai]# yum update Loaded plugins: fastestmirror Repository centos-sclo-rh is listed more than once in the configuration Determining fastest mirrors Could not retrieve mirrorlist http://mirrorlist.centos.org?archx86_64…

解决图片转 ICO 图标难题,支持批量处理

还在为图片转 ICO 图标发愁吗&#xff1f;别担心&#xff0c;今天为大家带来一款超实用的工具 ——Any to Icon。它功能强大&#xff0c;可实现批量图片转 ICO 图标&#xff0c;轻松解决格式转换难题。更棒的是&#xff0c;这款工具极为小巧&#xff0c;无需安装&#xff0c;即…

MultiPost--多平台博客发布工具

网站介绍 一键发布内容到多个社交平台的浏览器插件&#xff0c;支持知乎、微博、小红书、抖音等主流平台&#xff0c;支持文字、图片、视频等内容形式. 地址 GitHub &#xff1a; https://github.com/leaper-one/MultiPost-Extension Chorme: https://chromewebstore.google.…

Linux进程状态详解:僵尸进程与孤儿进程的深度探索与实践

文章目录 前言一、进程状态概述1.1 运行状态1.2 阻塞状态1.3 挂起状态 二、具体的Linux操作系统中的进程状态2.1 Linux内核源代码2.2 查看进程状态2.3 D磁盘休眠状态(Disk sleep)D状态的定义&#xff1a; 2.4 T停止状态(stopped)停止状态的概述&#xff1a;停止状态的触发条件&…