大模型基础——从零实现一个Transformer(3)

大模型基础——从零实现一个Transformer(1)-CSDN博客

大模型基础——从零实现一个Transformer(2)-CSDN博客


一、前言

之前两篇文章已经讲了Transformer的Embedding,Tokenizer,Attention,Position Encoding,
本文我们继续了解Transformer中剩下的其他组件.

二、归一化

2.1 Layer Normalization

layerNorm是针对序列数据提出的一种归一化方法,主要在layer维度进行归一化,即对整个序列进行归一化。

layerNorm会计算一个layer的所有activation的均值和方差,利用均值和方差进行归一化。

\mu = \sum _{i=1}^{d}x_{i}

\sigma = \sqrt{\frac{1}{d}\sum _{i=1}^{d}(x_{i} - \mu ))}

归一化后的激活值如下:

y = \frac{x - \mu }{\sqrt{\sigma +\varepsilon }}\gamma +\beta

其中 𝛾 和 𝛽 是可训练的模型参数。 𝛾 是缩放参数,新分布的方差 𝛾2 ; 𝛽 是平移系数,新分布的均值为 𝛽 。 𝜖 为一个小数,添加到方差上,避免分母为0。

2.2 LayerNormalization 代码实现

import torch
import torch.nn as nnclass LayerNorm(nn.Module):def __init__(self,num_features,eps=1e-6):super().__init__()self.gamma = nn.Parameter(torch.ones(num_features))self.beta = nn.Parameter(torch.zeros(num_features))self.eps = epsdef forward(self,x):"""Args:x (Tensor): (batch_size, seq_length, d_model)Returns:Tensor: (batch_size, seq_length, d_model)"""mean = x.mean(dim=-1,keepdim=True)std = x.std(dim=-1,keepdim=True,unbiased=False)normalized_x = (x - mean) / (std + self.eps)return self.gamma * normalized_x + self.betaif __name__ == '__main__':batch_size = 2seqlen = 3hidden_dim = 4# 初始化一个随机tensorx = torch.randn(batch_size,seqlen,hidden_dim)print(x)# 初始化LayerNormlayer_norm  = LayerNorm(num_features=hidden_dim)output_tensor = layer_norm(x)print("output after layer norm:\n,",output_tensor)torch_layer_norm = torch.nn.LayerNorm(normalized_shape=hidden_dim)torch_output_tensor = torch_layer_norm(x)print("output after torch layer norm:\n",torch_output_tensor)

三、残差连接

残差连接(residual connection,skip residual,也称为残差块)其实很简单

x为网络层的输入,该网络层包含非线性激活函数,记为F(x),用公式描述的话就是:

代码简单实现

x = x + layer(x)

四、前馈神经网络

4.1 Position-wise Feed Forward

Position-wise Feed Forward(FFN),逐位置的前馈网络,其实就是一个全连接前馈网络。目的是为了增加非线性,增强模型的表示能力。

它一个简单的两层全连接神经网络,不是将整个嵌入序列处理成单个向量,而是独立地处理每个位置的嵌入。所以称为position-wise前馈网络层。也可以看为核大小为1的一维卷积。

目的是把输入投影到特定的空间,再投影回输入维度。

FFN具体的公式如下:

𝐹𝐹𝑁(𝑥)=𝑓(𝑥𝑊1+𝑏1)𝑊2+𝑏2

上述公式对应FFN中的向量变换操作,其中f为非线性激活函数。

4.2 FFN代码实现

from torch import nn,Tensor
from torch.nn import functional as Fclass PositonWiseFeedForward(nn.Module):def __init__(self,d_model:int ,d_ff: int ,dropout: float=0.1) -> None:''':param d_model:  dimension of embeddings:param d_ff: dimension of feed-forward network:param dropout: dropout ratio'''super().__init__()self.ff1 = nn.Linear(d_model,d_ff)self.ff2 = nn.Linear(d_ff,d_model)self.dropout = nn.Dropout(dropout)def forward(self,x: Tensor) -> Tensor:''':param x:  (batch_size, seq_length, d_model) output from attention:return: (batch_size, seq_length, d_model)'''return self.ff2(self.dropout(F.relu(self.ff1(x))))

五、Transformer Encoder Block

如图所示,编码器(Encoder)由N个编码器块(Encoder Block)堆叠而成,我们依次实现。

from torch import nn,Tensor
## 之前实现的函数引入
from llm_base.attention.MultiHeadAttention1 import MultiHeadAttention
from llm_base.layer_norm.normal_layernorm import LayerNorm
from llm_base.ffn.PositionWiseFeedForward import PositonWiseFeedForwardfrom typing import *class EncoderBlock(nn.Module):def __init__(self,d_model: int,n_heads: int,d_ff: int,dropout: float,norm_first: bool = False):''':param d_model: dimension of embeddings:param n_heads: number of heads:param d_ff: dimension of inner feed-forward network:param dropout:dropout ratio:param norm_first : if True, layer norm is done prior to attention and feedforward operations(Pre-Norm).Otherwise it's done after(Post-Norm). Default to False.'''super().__init__()self.norm_first = norm_firstself.attention = MultiHeadAttention(d_model,n_heads,dropout)self.norm1 = LayerNorm(d_model)self.ff = PositonWiseFeedForward(d_model,d_ff,dropout)self.norm2 = LayerNorm(d_model)self.dropout1 = nn.Dropout(dropout)self.dropout2 = nn.Dropout(dropout)# self attention sub layerdef _self_attention_sub_layer(self,x: Tensor, attn_mask: Tensor, keep_attentions: bool) -> Tensor:x = self.attention(x,x,x,attn_mask,keep_attentions)return self.dropout1(x)# ffn sub layerdef _ffn_sub_layer(self,x: Tensor) -> Tensor:x = self.ff(x)return self.dropout2(x)def forward(self,src: Tensor,src_mask: Tensor == None,keep_attentions: bool= False) -> Tuple[Tensor,Tensor]:''':param src: (batch_size, seq_length, d_model):param src_mask: (batch_size,  1, seq_length):param keep_attentions:whether keep attention weigths or not. Defaults to False.:return:(batch_size, seq_length, d_model) output of encoder block'''# pass througth multi-head attention# src (batch_size, seq_length, d_model)# attn_score (batch_size, n_heads, seq_length, k_length)x = src# post LN or pre LNif self.norm_first:# pre LNx = x + self._self_attention_sub_layer(self.norm1(x),src_mask,keep_attentions)x = x + self._ffn_sub_layer(self.norm2(x))else:x = self.norm1(x + self._self_attention_sub_layer(x,src_mask,keep_attentions))x = self.norm2(x + self._ffn_sub_layer(x))return x

5.1 Post Norm Vs Pre Norm

公式区别

Pre Norm 和 Post Norm 的式子分别如下:

在大模型的区别

Post-LN :是在 Transformer 的原始版本中使用的归一化方案。在此方案中,每个子层(例如,自注意力机制或前馈网络)的输出先通过子层自身的操作,然后再通过层归一化(Layer Normalization)

Pre-LN:是先对输入进行层归一化,然后再传递到子层操作中。这样的顺序对于训练更深的网络可能更稳定,因为归一化的输入可以帮助缓解训练过程中的梯度消失和梯度爆炸问题。

5.2为什么Pre效果弱于Post

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/350982.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

红队攻防渗透技术实战流程:中间件安全:JettyJenkinsWeblogicWPS

红队攻防渗透实战 1. 中间件安全1.1 中间件-Jetty-CVE&信息泄漏1.2 中间件-Jenkins-CVE&RCE执行1.2.1 cve_2017_1000353 JDK-1.8.0_291 其他版本失效1.2.2 CVE-2018-10008611.2.3 cve_2019_100300 需要用户帐号密码1.3 中间件-Weblogic-CVE&反序列化&RCE1.4 应…

使用python绘制三维曲线图

使用python绘制三维曲线图 三维曲线图定义特点 效果代码 三维曲线图 三维曲线图(3D曲线图)是一种用于可视化三维数据的图表,它展示了数据在三个维度(X、Y、Z)上的变化。 定义 三维曲线图通过在三维坐标系中绘制曲线…

数据结构之线性表(4)

前面我们了解到线性表中的顺序表、链表等结构,今天我们探讨新的一种线性表——栈。 那么我们开始栈的探讨之旅吧。 1.栈的基本概念 1.1栈(Stack): 是只允许在一端进行插入或删除的线性表。首先栈是一种线性表,但限定…

sudo 用户切换

切换到centos 用户 sudo -i -u centos 解决centos sudo执行仍旧显示Permission denied 方法一(建议) 暂时切换到root用户 sudo -i然后执行命令即可 方法二 赋给当前用户权限: sudo chmod -R 777 目录路径 sudo chmod 777 文件路径.txt…

IDEA 设置主题、背景图片、背景颜色

一、设置主题 1、点击菜单 File -> Settings : 点击 Settings 菜单 2、点击 Editor -> Color Scheme -> Scheme, 小哈的 IDEA 版本号为 2022.2.3 , 官方默认提供了 4 种主题: Classic Light (经典白) ;Darcula (暗黑主…

2.2 抽头

目录 为什么要抽头 什么是抽头 接入系数 怎么抽头 信号源端抽头 负载端抽头 例题分析 要点总结 为什么要抽头 阻抗转换,使信号源内阻Rs与负载电阻RL变得很大,分流小,再使用并联方式。 什么是抽头 接入系数 电容越大,分压越…

【RabbitMQ】异步消息及Rabbitmq安装

https://blog.csdn.net/weixin_73077810/article/details/133836287 https://www.bilibili.com/video/BV1mN4y1Z7t9/ 同步调用和异步调用 如果我们的业务需要实时得到服务提供方的响应,则应该选择同步通讯(同步调用)。 如果我们追求更高的效…

MySQL-连接查询

049-内连接之等值连接 案例:查询每个员工所在的部门名称,要求显示员工名、部门名。 select e.ename, d.dname from emp e inner join dept d on e.deptnod.deptno;注意:inner可以省略 select e.ename, d.dname from emp e join dept d on…

Vue49-props属性

一、当同一个组件标签被使用多次 因为data属性写的是函数形式&#xff01; 二、需求&#xff1a;老王也想用<Student>组件&#xff0c;但是需要动态把老王想要的值传进来。 2-1、使用props属性接收参数 使用props属性&#xff0c;接收的这三个参数&#xff0c;是被保存在…

vs+qt5.0 使用poppler 操作库

Poppler 是一个用来生成 PDF 的C类库&#xff0c;从xpdf 继承而来。vs编译库如下&#xff1a; vs中只需要添加依赖库即可 头文件&#xff1a;

部署LVS-DR群集...

目录 最后一台主机&#xff08;第四台&#xff09; 本地yum源安装httpd&#xff08;非必做&#xff09; 继续开始从最后一台主机开始&#xff08;第四台&#xff09; 转第二台主机 转第三台主机 回第二台 上传 转第三台主机 上传 回第二台 转第三台 转第一台主机…

试论地产需求政策的有效性边界

分析师通过对传统框架因子的分析和美日地产的回顾&#xff0c;指出收入政策将成为核心&#xff0c;测算认为地方收储面积约0.5-1.1亿平、收储资金0.8-1.9万亿元&#xff0c;70城二手房价降幅收窄至[-4.5%&#xff0c;-1.6%]。 事件&#xff1a;2024年5月17日&#xff0c;央行印…

异常封装类统一后端响应的数据格式

异常封装类 如何统一后端响应的数据格式 1. 背景 后端作为数据的处理和响应&#xff0c;如何才能和前端配合好&#xff0c;能够高效的完成任务&#xff0c;其中一个比较重要的点就是后端返回的数据格式。 没有统一的响应格式&#xff1a; // 第一种&#xff1a; {"dat…

数 组

概述 数组是一个引用类型&#xff0c;是一种容器。 数组存储多个相同数据类型的数据&#xff0c;允许自动类型转换。例如 int 类型的数组&#xff0c;可以存放 byte、short 和 int 类型的数据&#xff0c;double 类型的数组&#xff0c;可以存放 byte、short、int、long、floa…

【Apache Doris】周FAQ集锦:第 5 期

【Apache Doris】周FAQ集锦&#xff1a;第 5 期 SQL问题数据操作问题运维常见问题其它问题关于社区 欢迎查阅本周的 Apache Doris 社区 FAQ 栏目&#xff01; 在这个栏目中&#xff0c;每周将筛选社区反馈的热门问题和话题&#xff0c;重点回答并进行深入探讨。旨在为广大用户和…

zip加密txt文件后,暴力破解时会有多个解密密码可以打开的疑问??

最近在做一个关于zip压缩文件解密的测试&#xff0c;发现通过暴力解密时&#xff0c;会有多个解密密码可以打开&#xff0c;非常疑惑&#xff0c;这里做个问题&#xff0c;希望能有大佬解惑。 1、首先在本地创建一个113449.txt的文件&#xff0c;然后右键txt文件选择压缩&…

1586. 扫地机器人

问题描述 Mike同学在为扫地机器人设计一个在矩形区域中行走的算法,Mike是这样设计的:先把机器人放在出发点 (1,1)(1,1) 点上,机器人在每个点上都会沿用如下的规则来判断下一个该去的点是哪里。规则:优先向右,如果向右不能走(比如:右侧出了矩形或者右侧扫过了)则尝试向…

为什么说Python 是胶水语言?

​ "Python 是胶水语言"这一说法是指它很擅长将不同的程序或代码库连接在一起&#xff0c;能够让来自不同编程语言或框架的组件无缝协作。Python 具有丰富的库和简单的语法&#xff0c;使得它可以轻松调用其他语言编写的程序或使用不同技术栈的模块。 ​ 以下是几个…

Linux C编译器从零开发二

自定义分词器 test.c #include <ctype.h> #include <stdarg.h> #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h>typedef enum {TK_PUNCT, // PunctuatorsTK_NUM, // Numeric literalsTK_EOF, // …

线上教育培训办公系统系统的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;管理员管理&#xff0c;教师管理&#xff0c;学生管理&#xff0c;运营事件管理 教师账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;学生管理&#xff0c;作业管理&#xff0c;电…