基于STM32和人工智能的智能小车系统

目录

  1. 引言
  2. 环境准备
  3. 智能小车系统基础
  4. 代码实现:实现智能小车系统
    • 4.1 数据采集模块
    • 4.2 数据处理与分析
    • 4.3 控制系统
    • 4.4 用户界面与数据可视化
  5. 应用场景:智能小车管理与优化
  6. 问题解决方案与优化
  7. 收尾与总结

1. 引言

随着机器人技术的发展,智能小车在教育、科研、娱乐等领域得到了广泛应用。通过结合STM32嵌入式系统和人工智能技术,可以实现更智能的小车控制和数据处理,提升小车的性能和应用价值。本文将详细介绍如何在STM32嵌入式系统中结合人工智能技术实现一个智能小车系统,包括环境准备、系统架构、代码实现、应用场景及问题解决方案和优化方法。

2. 环境准备

硬件准备

  • 开发板:STM32F407 Discovery Kit
  • 调试器:ST-LINK V2或板载调试器
  • 陀螺仪和加速度计:如MPU6050
  • 超声波传感器:用于距离检测,如HC-SR04
  • 电机驱动器:如L298N
  • 电机:直流电机(四个)
  • 遥控接收器:用于接收遥控信号
  • 显示屏:如OLED显示屏
  • 按键或旋钮:用于用户输入和设置
  • 电池:锂电池组

软件准备

  • 集成开发环境(IDE):STM32CubeIDE或Keil MDK
  • 调试工具:STM32 ST-LINK Utility或GDB
  • 库和中间件:STM32 HAL库、TensorFlow Lite
  • 人工智能模型:用于数据分析和小车控制

安装步骤

  1. 下载并安装 STM32CubeMX
  2. 下载并安装 STM32CubeIDE
  3. 配置STM32CubeMX项目并生成STM32CubeIDE项目
  4. 安装必要的库和驱动程序
  5. 下载并集成 TensorFlow Lite 库

3. 智能小车系统基础

控制系统架构

智能小车系统由以下部分组成:

  • 数据采集模块:用于采集小车的运动数据(姿态、位置、距离等)
  • 数据处理与分析:使用人工智能算法对采集的数据进行分析和预测
  • 控制系统:根据分析结果控制小车的电机和方向
  • 显示系统:用于显示小车状态和系统信息
  • 用户输入系统:通过按键或遥控器进行设置和控制

功能描述

通过陀螺仪和加速度计采集小车的姿态数据,超声波传感器采集距离数据,并使用人工智能算法进行分析和预测,实时调整电机速度和方向,实现智能化的小车控制。用户可以通过遥控器和按键进行设置,并通过显示屏查看当前状态和预测结果。

4. 代码实现:实现智能小车系统

4.1 数据采集模块

配置MPU6050陀螺仪和加速度计
使用STM32CubeMX配置I2C接口:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的I2C引脚,设置为I2C模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

初始化MPU6050传感器:

#include "stm32f4xx_hal.h"
#include "mpu6050.h"I2C_HandleTypeDef hi2c1;void I2C_Init(void) {__HAL_RCC_I2C1_CLK_ENABLE();hi2c1.Instance = I2C1;hi2c1.Init.ClockSpeed = 100000;hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;hi2c1.Init.OwnAddress1 = 0;hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;hi2c1.Init.OwnAddress2 = 0;hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;HAL_I2C_Init(&hi2c1);
}void MPU6050_Init(void) {MPU6050_Init(&hi2c1);
}void Read_IMU_Data(float* gyro, float* accel) {MPU6050_ReadData(&hi2c1, gyro, accel);
}

在主函数中读取IMU数据:

int main(void) {HAL_Init();SystemClock_Config();I2C_Init();MPU6050_Init();float gyro[3], accel[3];while (1) {Read_IMU_Data(gyro, accel);HAL_Delay(100);}
}

配置HC-SR04超声波传感器
使用STM32CubeMX配置GPIO接口:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的GPIO引脚,设置为输入和输出模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

初始化HC-SR04传感器并读取数据:

#include "stm32f4xx_hal.h"#define TRIG_PIN GPIO_PIN_0
#define ECHO_PIN GPIO_PIN_1
#define GPIO_PORT GPIOATIM_HandleTypeDef htim1;void GPIO_Init(void) {__HAL_RCC_GPIOA_CLK_ENABLE();GPIO_InitTypeDef GPIO_InitStruct = {0};GPIO_InitStruct.Pin = TRIG_PIN;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);GPIO_InitStruct.Pin = ECHO_PIN;GPIO_InitStruct.Mode = GPIO_MODE_INPUT;GPIO_InitStruct.Pull = GPIO_NOPULL;HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}void TIM_Init(void) {__HAL_RCC_TIM1_CLK_ENABLE();TIM_ClockConfigTypeDef sClockSourceConfig = {0};TIM_MasterConfigTypeDef sMasterConfig = {0};htim1.Instance = TIM1;htim1.Init.Prescaler = 84 - 1;htim1.Init.CounterMode = TIM_COUNTERMODE_UP;htim1.Init.Period = 0xFFFF;htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;HAL_TIM_Base_Init(&htim1);sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig);HAL_TIM_Base_Start(&htim1);
}uint32_t Read_Distance(void) {uint32_t local_time = 0;HAL_GPIO_WritePin(GPIO_PORT, TRIG_PIN, GPIO_PIN_SET);HAL_Delay(10);HAL_GPIO_WritePin(GPIO_PORT, TRIG_PIN, GPIO_PIN_RESET);while (!(HAL_GPIO_ReadPin(GPIO_PORT, ECHO_PIN)));while (HAL_GPIO_ReadPin(GPIO_PORT, ECHO_PIN)) {local_time++;HAL_Delay(1);}return local_time;
}int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();TIM_Init();uint32_t distance;while (1) {distance = Read_Distance();HAL_Delay(1000);}
}

4.2 数据处理与分析

集成TensorFlow Lite进行数据分析
使用STM32CubeMX配置必要的接口,确保嵌入式系统能够加载和运行TensorFlow Lite模型。

代码实现:

初始化TensorFlow Lite:

#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
#include "model_data.h"  // 人工智能模型数据namespace {tflite::MicroErrorReporter micro_error_reporter;tflite::MicroInterpreter* interpreter = nullptr;TfLiteTensor* input = nullptr;TfLiteTensor* output = nullptr;constexpr int kTensorArenaSize = 2 * 1024;uint8_t tensor_arena[kTensorArenaSize];
}void AI_Init(void) {tflite::InitializeTarget();static tflite::MicroMutableOpResolver<10> micro_op_resolver;micro_op_resolver.AddFullyConnected();micro_op_resolver.AddSoftmax();const tflite::Model* model = tflite::GetModel(model_data);if (model->version() != TFLITE_SCHEMA_VERSION) {TF_LITE_REPORT_ERROR(&micro_error_reporter,"Model provided is schema version %d not equal ""to supported version %d.",model->version(), TFLITE_SCHEMA_VERSION);return;}static tflite::MicroInterpreter static_interpreter(model, micro_op_resolver, tensor_arena, kTensorArenaSize,&micro_error_reporter);interpreter = &static_interpreter;interpreter->AllocateTensors();input = interpreter->input(0);output = interpreter->output(0);
}void AI_Run_Inference(float* input_data, float* output_data) {// 拷贝输入数据到模型输入张量for (int i = 0; i < input->dims->data[0]; ++i) {input->data.f[i] = input_data[i];}// 运行模型推理if (interpreter->Invoke() != kTfLiteOk) {TF_LITE_REPORT_ERROR(&micro_error_reporter, "Invoke failed.");return;}// 拷贝输出数据for (int i = 0; i < output->dims->data[0]; ++i) {output_data[i] = output->data.f[i];}
}int main(void) {HAL_Init();SystemClock_Config();AI_Init();float input_data[INPUT_SIZE];float output_data[OUTPUT_SIZE];while (1) {// 获取传感器数据,填充 input_data 数组// 运行AI推理AI_Run_Inference(input_data, output_data);// 根据模型输出数据执行相应的操作HAL_Delay(1000);}
}

4.3 控制系统

配置GPIO控制电机
使用STM32CubeMX配置GPIO:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的GPIO引脚,设置为输出模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

首先,初始化电机控制引脚:

#include "stm32f4xx_hal.h"#define MOTOR1_PIN GPIO_PIN_0
#define MOTOR2_PIN GPIO_PIN_1
#define MOTOR3_PIN GPIO_PIN_2
#define MOTOR4_PIN GPIO_PIN_3
#define GPIO_PORT GPIOBvoid GPIO_Init(void) {__HAL_RCC_GPIOB_CLK_ENABLE();GPIO_InitTypeDef GPIO_InitStruct = {0};GPIO_InitStruct.Pin = MOTOR1_PIN | MOTOR2_PIN | MOTOR3_PIN | MOTOR4_PIN;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}void Control_Motor(uint8_t motor, uint8_t state) {uint16_t pin = 0;switch (motor) {case 1: pin = MOTOR1_PIN; break;case 2: pin = MOTOR2_PIN; break;case 3: pin = MOTOR3_PIN; break;case 4: pin = MOTOR4_PIN; break;}HAL_GPIO_WritePin(GPIO_PORT, pin, state ? GPIO_PIN_SET : GPIO_PIN_RESET);
}int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();AI_Init();float input_data[INPUT_SIZE];float output_data[OUTPUT_SIZE];while (1) {// 获取传感器数据,填充 input_data 数组// 运行AI推理AI_Run_Inference(input_data, output_data);// 根据AI输出控制电机uint8_t motor1_state = output_data[0] > 0.5;uint8_t motor2_state = output_data[1] > 0.5;uint8_t motor3_state = output_data[2] > 0.5;uint8_t motor4_state = output_data[3] > 0.5;Control_Motor(1, motor1_state);Control_Motor(2, motor2_state);Control_Motor(3, motor3_state);Control_Motor(4, motor4_state);HAL_Delay(100);}
}

4.4 用户界面与数据可视化

配置OLED显示屏
使用STM32CubeMX配置I2C接口:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的I2C引脚,设置为I2C模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

首先,初始化OLED显示屏:

#include "stm32f4xx_hal.h"
#include "i2c.h"
#include "oled.h"void Display_Init(void) {OLED_Init();
}

然后实现数据展示函数,将小车状态数据显示在OLED屏幕上:

void Display_Car_Data(float* output_data) {char buffer[32];sprintf(buffer, "Motor1: %s", output_data[0] > 0.5 ? "ON" : "OFF");OLED_ShowString(0, 0, buffer);sprintf(buffer, "Motor2: %s", output_data[1] > 0.5 ? "ON" : "OFF");OLED_ShowString(0, 1, buffer);sprintf(buffer, "Motor3: %s", output_data[2] > 0.5 ? "ON" : "OFF");OLED_ShowString(0, 2, buffer);sprintf(buffer, "Motor4: %s", output_data[3] > 0.5 ? "ON" : "OFF");OLED_ShowString(0, 3, buffer);
}

在主函数中,初始化系统并开始显示数据:

int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();MPU6050_Init();AI_Init();Display_Init();float input_data[INPUT_SIZE];float output_data[OUTPUT_SIZE];while (1) {// 读取传感器数据并填充 input_data 数组// 运行AI推理AI_Run_Inference(input_data, output_data);// 显示小车状态数据和AI结果Display_Car_Data(output_data);// 根据AI结果控制电机uint8_t motor1_state = output_data[0] > 0.5;uint8_t motor2_state = output_data[1] > 0.5;uint8_t motor3_state = output_data[2] > 0.5;uint8_t motor4_state = output_data[3] > 0.5;Control_Motor(1, motor1_state);Control_Motor(2, motor2_state);Control_Motor(3, motor3_state);Control_Motor(4, motor4_state);HAL_Delay(100);}
}

5. 应用场景:智能小车管理与优化

教育机器人

智能小车可以用于教育领域,帮助学生学习机器人控制和人工智能技术。

科研实验

在科研实验中,智能小车可以用于测试和验证新的算法和技术,促进科研创新。

家庭娱乐

智能小车也可以用于家庭娱乐,提供互动和娱乐功能,丰富家庭生活。

安防巡检

智能小车可以用于安防巡检,通过传感器和摄像头实时监控周围环境,提升安全防护能力。

 

⬇帮大家整理了单片机的资料

包括stm32的项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多嵌入式详细资料

问题讨论,stm32的资料领取可以私信!

6. 问题解决方案与优化

常见问题及解决方案

  1. 传感器数据不准确:确保传感器与STM32的连接稳定,定期校准传感器以获取准确数据。

    • 解决方案:检查传感器与STM32之间的连接是否牢固,必要时重新焊接或更换连接线。同时,定期对传感器进行校准,确保数据准确。例如,使用校准工具对陀螺仪和加速度计进行校准,使用标准溶液对超声波传感器进行测试。
  2. 设备响应延迟:优化控制逻辑和硬件配置,减少设备响应时间,提高系统反应速度。

    • 解决方案:优化传感器数据采集和处理流程,减少不必要的延迟。使用DMA(直接存储器访问)来提高数据传输效率,减少CPU负担。选择速度更快的处理器和传感器,提升整体系统性能。
  3. 显示屏显示异常:检查I2C通信线路,确保显示屏与MCU之间的通信正常,避免由于线路问题导致的显示异常。

    • 解决方案:检查I2C引脚的连接是否正确,确保电源供电稳定。使用示波器检测I2C总线信号,确认通信是否正常。如有必要,更换显示屏或MCU。
  4. 电机控制不稳定:确保电机驱动器和电机的连接正常,优化电机控制算法。

    • 解决方案:检查电机驱动器与电机的连接,确保接线正确、牢固。使用更稳定的电源供电,避免电压波动影响电机运行。优化电机控制算法,确保电机启动和停止时平稳过渡。
  5. 电池续航时间短:优化系统功耗设计,提高电池续航时间。

    • 解决方案:使用低功耗模式(如STM32的STOP模式)降低系统功耗。选择容量更大的电池,并优化电源管理策略,减少不必要的电源消耗。例如,只有在必要时才启动传感器和显示屏。

优化建议

  1. 数据集成与分析:集成更多类型的传感器数据,使用大数据分析和机器学习技术进行小车状态预测和优化。

    • 建议:增加更多环境和位置传感器,如气压传感器、红外传感器等。使用云端平台进行数据分析和存储,提供更全面的小车管理服务。
  2. 用户交互优化:改进用户界面设计,提供更直观的数据展示和更简洁的操作界面,增强用户体验。

    • 建议:使用高分辨率彩色显示屏,提供更丰富的视觉体验。设计简洁易懂的用户界面,让用户更容易操作。提供图形化的数据展示,如实时图表、地图显示等。
  3. 智能化控制提升:增加智能决策支持系统,根据历史数据和实时数据自动调整小车控制策略,实现更高效的小车管理。

    • 建议:使用人工智能技术分析小车的运行数据,提供个性化的控制建议。结合历史数据,预测可能的障碍物和路线优化,提前调整小车的运行策略。

7. 收尾与总结

本教程详细介绍了如何在STM32嵌入式系统中结合人工智能技术实现智能小车系统,从硬件选择、软件实现到系统配置和应用场景都进行了全面的阐述。通过合理的技术选择和系统设计,可以构建一个高效且功能强大的智能小车系统。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/353613.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

烽宇团队走进社区,关爱老人、爱护环境,开展一系列公益活动

在这片城市的喧嚣与繁忙中,烽宇团队用实际行动展示了他们对社会的关爱与责任感。作为在科技和商业领域取得显著成就的团队,烽宇不仅专注于企业发展,还积极投身于社区公益活动,回馈社会。 关爱老人,温暖人心 社区中的老年人是社会的宝贵财富,他们的生活质量直接关系到社区的幸福…

【论文精读】树环水印Tree-Ring Watermarks:隐形且稳健的扩散图像的指纹

文章目录 一、文章概览&#xff08;一&#xff09;主要工作&#xff08;二&#xff09;相关工作 二、具体方法&#xff08;一&#xff09;威胁模型&#xff08;二&#xff09;树轮水印概述&#xff08;三&#xff09;构造树轮水印键&#xff08;四&#xff09;提取用于水印检测…

Spring中网络请求客户端WebClient的使用详解

Spring中网络请求客户端WebClient的使用详解_java_脚本之家 Spring5的WebClient使用详解-腾讯云开发者社区-腾讯云 在 Spring 5 之前&#xff0c;如果我们想要调用其他系统提供的 HTTP 服务&#xff0c;通常可以使用 Spring 提供的 RestTemplate 来访问&#xff0c;不过由于 …

口罩佩戴智能监测摄像机

智能监测摄像机在现代城市安全管理中扮演着关键角色&#xff0c;尤其是像口罩佩戴智能监测摄像机这样的设备&#xff0c;其应用正在日益扩展&#xff0c;对于公共卫生和安全至关重要。 这类摄像机利用先进的图像识别技术&#xff0c;能够实时监测人群中是否佩戴口罩。通过高精度…

python基础语法学习(工程向)-Stage3-数据可视化

json 是一种轻量的数据交互格式&#xff0c;可以按照json指定的格式去组织和封装数据&#xff0c;而本质上是一个带有特定格式的字符串。 功能 json是在各个编程语言中流通的数据格式&#xff0c;负责不同编程语言之间的数据传递和交互。 格式 json的格式要求较为严格&#…

[Cloud Networking] Layer3 (Continue)

文章目录 1. DHCP Protocol1.1 DHCP 三种分配方式1.2 DHCP Relay (中继) 2. 路由协议 (Routing Protocol)2.1 RIP (Routing Information Protocol)2.2 OSPF Protocol2.2.1 OSPF Area2.2.2 Route ID / DR / BDR2.2.3 LSA / OSPF 邻居表 / LSDB / OSPF路由表 2.3 BGP Protocol2.4…

交易中的群体行为特征和决策模型

本文基于人的行为和心理特征&#xff0c;归纳出交易中群体的行为决策模型&#xff0c;并基于这个模型&#xff0c;分析股价波浪运行背后的逻辑&#xff0c;以及投机情绪的周期变化规律&#xff0c;以此指导交易&#xff0c;分析潜在的风险和机会&#xff0c;寻找并等待高性价比…

Python大数据-电商商品详情数据分析【JD电商平台为例】

一、项目背景 网上购物已经成为大众生活的重要组成部分。人们在电商平台上浏览商品并购物&#xff0c;产生了海量的用户行为数据&#xff0c;用户对商品的详情数据对商家具有重要的意义。利用好这些碎片化、非结构化的数据&#xff0c;将有利于企业在电商平台上的持续发展&…

mysql分析常用锁

这里写自定义目录标题 1.未提交事物&#xff0c;阻塞DDL&#xff0c;继而阻塞所有同表的后续操作,查看未提交事务的进程2.存着正在进行的线程数据。3.根据processlist表中的id杀掉未释放的线程4.查看正在使用的表5.mysql为什么state会有waiting for handler commit6.什么情况导…

鸿蒙实现金刚区效果

前言&#xff1a; DevEco Studio版本&#xff1a;4.0.0.600 所谓“金刚区"是位于APP功能入口的导航区域&#xff0c;通常以“图标文字”的宫格导航的形式出现。之所以叫“金刚区”&#xff0c;是因为该区域会随着业务目标的改变&#xff0c;展示不同的功能图标&#xff…

快速压缩前端项目

背景 作为前端开发工程师难免会遇到需要把项目压缩成压缩文件来传送的情况&#xff0c;这时候需要压缩软件进行压缩文件处理 问题 项目中的依赖包文件非常庞大&#xff0c;严重影响压缩速度&#xff0c;即使想先删除再压缩&#xff0c;删除文件也不会很快完成 解决 首先要安…

Jmeter如何进行分布式测试

使用Jmeter进行性能测试时&#xff0c;有些同学问我如果并发数比较大(比如最近项目需要支持1000并发)&#xff0c;单台电脑的配置(CPU和内存)可能无法支持&#xff0c;怎么办就需要使用分布式压测 1.分布式原理&#xff1a; 1、Jmeter分布式测试时&#xff0c;选择其中一台作…

数据库复习——范式(Normal Form)

因为上课的时候一直在摸鱼没有听懂&#xff0c;所以复习的时候理解一下数据库中关于范式的相关知识点。涉及范式的定义&#xff0c;以及给定一个函数依赖集判断是那种范式的方法。 范式 迄今为止一共提出了 6 6 6 种范式&#xff0c;他们的关系是 5 N F ⊂ 4 N F ⊂ B C N F …

UE5 C++ 跑酷游戏练习 Part1

一.修改第三人称模板的 Charactor 1.随鼠标将四处看的功能的输入注释掉。 void ARunGANCharacter::SetupPlayerInputComponent(class UInputComponent* PlayerInputComponent) {// Set up action bindingsif (UEnhancedInputComponent* EnhancedInputComponent CastChecked&…

UML详解

1.what is the UML UML 全称是 Unified Modeling Language&#xff08;统一建模语言&#xff09;&#xff0c;它以图形的方式来描述软件的概念 2.它存在的目的 UML 的目标是通过一定结构的表达&#xff0c;来解决现实世界到软件世界的沟通问题。 3.什么是模&#xff0c;…

Centos7安装自动化运维Ansible

自动化运维Devops-Ansible Ansible是新出现的自动化运维工具&#xff0c;基于Python 开发&#xff0c;集合了众多运维工具&#xff08;puppet 、cfengine、chef、func、fabric&#xff09;的优点&#xff0c;实现了批量系统配置 、批量程序部署、批量运行命令 等功能。Ansible…

【每日刷题】Day68

【每日刷题】Day68 &#x1f955;个人主页&#xff1a;开敲&#x1f349; &#x1f525;所属专栏&#xff1a;每日刷题&#x1f34d; &#x1f33c;文章目录&#x1f33c; 1. 451. 根据字符出现频率排序 - 力扣&#xff08;LeetCode&#xff09; 2. 最小的K个数_牛客题霸_牛客…

github连接报本地

一、创建GIthub账号 这里默认大家已经创建好了并且有加速器&#xff0c;能正常上网&#xff0c;然后才能进行下面的操作。 二、创建ssh公钥 网址&#xff1a;Sign in to GitHub GitHub Sign in to GitHub GitHub 进入下面的界面&#xff1a; 然后创建新的密钥 三、官方文…

Excel/WPS《超级处理器》功能介绍与安装下载

超级处理器是基于Excel或WPS开发的一款插件&#xff0c;拥有近300个功能&#xff0c;非常简单高效的处理表格数据&#xff0c;安装即可使用。 点击此处&#xff1a;超i处理器安装下载 Excel菜单&#xff0c;显示如下图所示&#xff1a; WPS菜单显示&#xff0c;如下图所示&am…

【BES2500x系列 -- RTX5操作系统】CMSIS-RTOS RTX -- 实时操作系统的核心,为嵌入式系统注入活力 --(一)

&#x1f48c; 所属专栏&#xff1a;【BES2500x系列】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &#x1f49…