带颜色的3D点云数据发布到ros1中(通过rviz显示)python、C++

ros中发布点云数据xyz以及带颜色的点云数据xyzrgb

  • ros中发布点云数据xyz
    • 可以直接用python来做或者C++(看个人偏好)
  • ros中发布带颜色的点云数据xyzrgb
    • 环境
    • 1.新建ROS工作空间
    • 2.创建功能包

ros中发布点云数据xyz

可以直接用python来做或者C++(看个人偏好)

在这里我们带有颜色的点云数据格式为x y z c
其中c值为float型,有四种值1.0,2.0,3.0,4.0
在这里插入图片描述

代码文件b.py,具体内容如下:

import rospy
from sensor_msgs.msg import Image,PointCloud2
from cv_bridge import CvBridge
import numpy as np
import os
import cv2
from a import *
import open3d as o3dDATA_PATH='/home/cxh/project/0618/point_cloud_selected.txt'
if __name__=='__main__':rospy.init_node('jizhui_node',anonymous=True)# cam_pub=rospy.Publisher('kitti_cam',Image,queue_size=10)pcl_pub=rospy.Publisher('/jizhui_pcl',PointCloud2,queue_size=1)#创建点云发布者,queue_size=10表示消息队列的大小bridge=CvBridge()#创建一个CvBridge实例,用于在OpenCV图像与ROS图像消息之间进行转换# rate=rospy.Rate(1)#设置发布频率为10Hzrate=rospy.Rate(5,reset=True)frame=0#初始化帧计数器def load_point_cloud(file_path):"""从文本文件中加载点云数据"""point_cloud = []color=[]with open(file_path, 'r') as f:for line in f:if line.strip():  # 忽略空行try:# 假设每行的格式为: x y zx, y, z, c= map(lambda x: round(float(x) / 100, 5) if x != line.strip().split()[-1] else float(x), line.strip().split())point_cloud.append([x, y, z])#读取c的值,并把c的值映射成对应RGB值# 1.0:灰色[220,220,220]# 2.0:蓝色[173,216,230]# 3.0:黄色[255,215,0]# 4.0:红色[255,182,193]# r, g, b = color_mapping(c)# color.append([r, g, b])# print("x y z",point_cloud)except ValueError:rospy.logerr("Error parsing line: {}".format(line))return np.array(point_cloud)# 循环播放,通过frame控制帧数while not rospy.is_shutdown():#主循环在ROS节点关闭前一直运行# 读取点云数据    point_cloud= load_point_cloud(DATA_PATH)#,color# print("shape:",point_cloud.shape)#49行3列publish_pcl(point_cloud,pcl_pub,'map')#调用publish_pcl函数将点云数据发布到ROS主题jizhui_pcl。color,# pcl_pub.publish(pcl2_msg)rospy.loginfo('published')#在日志中记录发布信息rate.sleep()#按照设定的频率进行休眠

文件a.py具体内容如下:

from sensor_msgs.msg import PointCloud2,PointField
import sensor_msgs.point_cloud2 as pcl2from std_msgs.msg import Header
import rospy
import numpy as np
def publish_pcl(point_cloud,pcl_pub,frame_id):#定义点云数据的ROS发布者。if point_cloud.size == 0:rospy.logwarn("Empty point cloud data, skipping publish.")returnheader=Header()header.stamp=rospy.Time.now()header.frame_id=frame_idpoint_cloud_message=pcl2.create_cloud_xyz32(header,point_cloud)pcl_pub.publish(point_cloud_message)

发布到ros的步骤如下

#启动 ROS master
#启动一个终端键入
roscore
#在python文件b.py下运行代码
python b.py
#再另起一个终端键入
rviz

启动了 RViz 后点击界面左下角的Add按钮并添加一个 PointCloud2 显示
即可在 RViz 中看到点云了
**注意:**对于发布带颜色的点云数据,由于python版没有creat_xyzrgb32 ,这个功能函数只有C++有,python的需要自己写一个这样的功能函数。我本人也参考b站博主学习视频链接: 用python将着色点云在ros中发布—解析PointCloud2与Rviz可视化源码弄了一下午没成功,就改用C++来做了!!
(ps这里还有一个特别需要注意的点,就是有的点云图很大且高,小窗口下不容易发现,我们一开始就因为这个问题郁闷了很久,一遍遍检查代码,后来发现早就生成了,只是没有吧窗口放大,多拖拉几下就能找到躲在角落处的点云图!!!)

ros中发布带颜色的点云数据xyzrgb

环境

环境:
Ubuntu20.04
ROS noetic
C++

1.新建ROS工作空间

mkdir -p PointCloundShow_ws/src
cd PointCloundShow_ws/src
catkin_init_workspace
cd ..
catkin_make 

2.创建功能包

cd src
catkin_create_pkg pointcloundshow pcl_ros roscpp rospy sensor_msgs std_msgs 

在功能包的src文件夹下新建cpp文件pcl_colored.cpp
代码文件pcl_colored.cpp内容如下:

#include <ros/ros.h>
#include <sensor_msgs/PointCloud2.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl_conversions/pcl_conversions.h>
#include <fstream>
#include <sstream>
#include <vector>
#include <iostream>
#include <string>using namespace std;
uint32_t color_mapping(float c) {if (c == 1.0) {return (220 << 16) | (220 << 8) | 220;  // 灰色} else if (c == 2.0) {return (173 << 16) | (216 << 8) | 230;  // } else if (c == 3.0) {return (255 << 16) | (215 << 8) | 0;  // } else {return (255 << 16) | (182 << 8) | 193;  // }
}void readPointCloudFromFile(const string& filename, pcl::PointCloud<pcl::PointXYZRGB>::Ptr& cloud) {ifstream infile(filename);if (!infile.is_open()) {cerr << "Could not open file: " << filename << endl;return;}string line;while (getline(infile, line)) {istringstream iss(line);float x, y, z, c;if (!(iss >> x >> y >> z >> c)) {cerr << "Error reading line: " << line << endl;continue;}// 缩小 x, y, z 的值100倍x /= 100.0f;y /= 100.0f;z /= 100.0f;pcl::PointXYZRGB point;point.x = x;point.y = y;point.z = z;uint32_t rgb = color_mapping(c);point.rgb = *reinterpret_cast<float*>(&rgb);cloud->points.push_back(point);}cloud->width = cloud->points.size();cloud->height = 1;cloud->is_dense = true;infile.close();
}
int main(int argc, char** argv) {// 初始化ROS节点ros::init(argc, argv, "pcl_create_xyzrgb");ros::NodeHandle nh;// 创建一个发布者ros::Publisher pcl_pub = nh.advertise<sensor_msgs::PointCloud2>("pcl_output_colored", 1);// 创建一个点云对象pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZRGB>());// 从文件读取点云数据string filename = "/home/cxh/project/0618/point_cloud_selected.txt";readPointCloudFromFile(filename, cloud);// 将点云数据转换为ROS消息sensor_msgs::PointCloud2 output;pcl::toROSMsg(*cloud, output);output.header.frame_id = "map";// 发布点云消息ros::Rate loop_rate(1);while (ros::ok()) {output.header.stamp = ros::Time::now();pcl_pub.publish(output);ros::spinOnce();loop_rate.sleep();}return 0;
}

然后将下面的编译规则写到功能包的CMakeLists.txt文件中

find_package(PCL REQUIRED) 
include_directories(include${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS}) 
add_executable(pcl_colored.cpp src/pcl_colored.cpp)
target_link_libraries(pcl_colored.cpp ${catkin_LIBRARIES} ${PCL_LIBRARIES})

翻倒CMakeLists.txt文件的最后一行添加,我们的如下:
在这里插入图片描述
如图所示,因为我们用C++写了两个文件,一个是pcl_create.cpp另一个是目前的pcl_colored.cpp,所以我们这个是追加到后面的,供参考!

回到工作空间路径下也就是PointCloundShow_ws,输入catkin_make进行编译
然后再更新一下:source devel/setup.bash(**注意:**只要你修改过你工作空间任何一处代码,每次都需要重新编译和更新!!!另外每新建了一个cpp文件都需要在CMakeLists.txt文件做添加!!!)
然后新起一个终端终端运行roscore指令,
再在刚的source命令那个终端运行rosrun pointcloundshow pcl_create
最后再另起一个终端允许rviz指令

打开rviz
在rviz中左下角点Add增加PointCloud2d
topic 选 /pcl_output
fixed Frame 输入odom
或者直接点左下角的Add然后会弹出一个名字为rviz的框,选择By topic下的对应发布的点云名字
即可看到发布的带有颜色的点云图
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/356168.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据中心:AI范式下的内存挑战与机遇

在过去的十年里&#xff0c;数据中心和服务器行业经历了前所未有的扩张&#xff0c;这一进程伴随着CPU核心数量、内存带宽(BW)&#xff0c;以及存储容量的显著增长。这种超大规模数据中心的扩张不仅带来了对计算能力的急剧需求&#xff0c;也带来了前所未有的内存功率密度挑战&…

MySQL之复制(九)

复制 复制管理和维护 确定主备是否一致 在理想情况下&#xff0c;备库和主库的数据应该是完全一样的。但事实上备库可能发生错误并导致数据不一致。即使没有明显的错误&#xff0c;备库同样可能因为MySQL自身的特性导致数据不一致&#xff0c;例如MySQL的Bug、网络中断、服务…

【STM32】GPIO简介

1.GPIO简介 GPIO是通用输入输出端口的简称&#xff0c;简单来说就是STM32可控制的引脚&#xff0c;STM32芯片的GPIO引脚与外部设备连接起来&#xff0c;从而实现与外部通讯、控制以及数据采集的功能。 STM32芯片的GPIO被分成很多组&#xff0c;每组有16个引脚。 最基本的输出…

STM32通过SPI硬件读写W25Q64

文章目录 1. W25Q64 2. 硬件电路 3. 软件/硬件波形对比 4. STM32中的SPI外设 5. 代码实现 5.1 MyI2C.c 5.2 MyI2C.h 5.3 W25Q64.c 5.4 W25Q64.h 5.5 W25Q64_Ins.h 5.6 main.c 1. W25Q64 对于SPI通信和W25Q64的详细解析可以看下面这篇文章 STM32单片机SPI通信详解-C…

AI落地不容乐观-从神话到现实

开篇 在这儿我不是给大家泼冷水&#xff0c;而是我们一起来看一下从2022年11月左右GPT3.0掀起了一股“AI狂潮”后到现在&#xff0c;AI在商用、工业、军用下到底有没有得到了大规模应用呢&#xff1f; 这个答案每一个参与者其实心里有数那就是&#xff1a;没有。 但是呢它的…

【教程】PVE下uhd630核显直通HDMI输出 以NUC9为例村雨Murasame

大家好&#xff0c;村雨本雨又来发教程了 最近在搞小主机&#xff0c;之前hp400g3仅仅200多元成功核显直通HDMI&#xff0c;作为简单NAS、解码机、伺服机、中控都非常棒&#xff0c;待机仅9w 村雨Murasame&#xff1a;【教程】7代核显直通HDMI成功输出画面 PVE下7代intel核显…

学生选课系统

摘 要 随着学校规模的日渐庞大与课程种类的丰富&#xff0c;传统手工选课方式的局限日益凸显&#xff0c;其繁琐和易错性在处理庞大数据时尤为明显。在追求个性化学习路径的现代教育浪潮中&#xff0c;学生们对自主选课的需求愈发强烈&#xff0c;他们渴望根据兴趣和职业规划自…

牛客练习题打卡--redis

A list保证数据线性有序且元素可重复&#xff0c;它支持lpush、blpush、rpop、brpop等操作&#xff0c;可以当作简单的消息队列使用&#xff0c;一个list最多可以存储2^32-1个元素; redis中set是无序且不重复的; zset可以按照分数进行排序 &#xff0c;是有序不重复的; Redi…

手写方法实现整型例如:123与字符串例如:“123“相互转化(下篇)

目录 一、前言 二、整型转化为字符串 1. 初始化变量 2.数字1转字符1 3.取出value中的每一项数字 4.将字符放入字符数组中 5.最终代码 三、最后 一、前言 本篇文章紧跟上篇文章&#xff0c;本片内容为整型转化为字符串类型。至于我为什么要分两篇文章&#xff0c;主要…

中国机器人产业崛起,德国市场面临30%的份额挑战

导语 大家好&#xff0c;我是社长&#xff0c;老K。专注分享智能制造和智能仓储物流等内容。 新书《智能物流系统构成与技术实践》 随着科技的不断进步&#xff0c;机器人行业正迎来前所未有的发展机遇。令人震惊的是&#xff0c;根据最新统计数据&#xff0c;中国机器人产业在…

Java面向对象的三大特性之一——继承

目录 一、继承概念 二、为什么要继承 三、继承语法&#xff08;关键字extends&#xff09; 四、父类成员访问 1、子类中访问父类的成员变量 &#xff08;1&#xff09;子类和父类不存在同名的成员变量 &#xff08;2&#xff09;子类和父类中存在同名的成员变量 2、子类中访…

语言模型测试系列【10】

一个巧合&#xff0c;又测到了新的区别&#xff0c;以下是关于python代码生成的测试效果。 语言模型 文心一言讯飞星火通义千问2.5豆包360智脑百小应腾讯元宝KimiC知道商量智谱清言 这次的测试问题来源于**智谱AI开放平台**的介绍&#xff0c;正好有个python生成的效果说明…

【第24章】Vue实战篇之用户信息展示

文章目录 前言一、准备1. 获取用户信息2. 存储用户信息3. 加载用户信息 二、用户信息1.昵称2.头像 三、展示总结 前言 这里我们来展示用户昵称和头像。 一、准备 1. 获取用户信息 export const userInfoService ()>{return request.get(/user/info) }2. 存储用户信息 i…

Mongodb在UPDATE操作中使用$push向数组中插入数据

学习mongodb&#xff0c;体会mongodb的每一个使用细节&#xff0c;欢迎阅读威赞的文章。这是威赞发布的第69篇mongodb技术文章&#xff0c;欢迎浏览本专栏威赞发布的其他文章。如果您认为我的文章对您有帮助或者解决您的问题&#xff0c;欢迎在文章下面点个赞&#xff0c;或者关…

数学建模整数规划学习笔记

与线性规划的本质区别在于决策变量是否取整。 &#xff08;1&#xff09;分支定界法 若不考虑整数限制先求出相应松弛问题的最优解&#xff1a; 若松弛问题&#xff08;线性规划&#xff09;无解&#xff0c;则ILP&#xff08;整数规划&#xff09;无解。 若求得的松弛问题最…

为什么动态代理接口中可以不加@Mapper注解

为什么动态代理接口中可以不加Mapper注解 如下图&#xff1a; 我们上面的UserMapper上面没有加Mapper注解&#xff0c;按道理来说UserMapper这个类应该是注入不到IOC容器里面的&#xff0c;但是为什么我们程序的运行效果仍然是正常的呢&#xff1f;这是因为你的启动类上加了m…

你不会是这样摆放 WiFi 路由器的吧?

当你购买WiFi路由器时&#xff0c;可能会对如何放置路由器以获得最好的信号覆盖感到迷茫。 那&#xff0c;到底要怎样摆放路由器&#xff0c;信号才会更好呢&#xff1f; 首先&#xff0c;咱们先简单了解一下天线信号是如何传输的。通常&#xff0c;天线信号是从天线垂直方向&a…

LeetCode---402周赛

题目列表 3184. 构成整天的下标对数目 I 3185. 构成整天的下标对数目 II 3186. 施咒的最大总伤害 3187. 数组中的峰值 一、构成整天的下标对数目 I & II 可以直接二重for循环暴力遍历出所有的下标对&#xff0c;然后统计符合条件的下标对数目返回。代码如下 class So…

NetSuite 不同类型Item的公司间交易科目的设置

我们知道&#xff0c;NetSuite中有Intercompany Preferences的设置&#xff0c;如下所示&#xff0c;分别涉及到公司间应收、公司间应付、公司间收入、公司间费用以及公司间成本共5个科目&#xff0c;非常明确清晰。 最近用户遇到的场景是&#xff0c;如果是Non-Inventory Item…

【深度学习】stable-diffusion-3,SD3生图体验

stabilityai/stable-diffusion-3-medium 代码地址&#xff1a; https://huggingface.co/stabilityai/stable-diffusion-3-medium 可在这里体验&#xff1a; https://huggingface.co/spaces/ameerazam08/SD-3-Medium-GPU