python数据分析-糖尿病数据集数据分析预测

一、研究背景和意义

糖尿病是美国最普遍的慢性病之一,每年影响数百万美国人,并对经济造成重大的经济负担。糖尿病是一种严重的慢性疾病,其中个体失去有效调节血液中葡萄糖水平的能力,并可能导致生活质量和预期寿命下降。。。。

本案例分析针对糖尿病数据集进行探索和分析:

二、实证分析

首先,导入需要的基础包:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['font.sans-serif'] = ['KaiTi']  #中文
plt.rcParams['axes.unicode_minus'] = False   #负号import seaborn as sns

读取数据文件

###读取文件数据
df=pd.read_csv('data.csv')
###展示数据前15行
df.head(15)

数据集和代码

报告代码数据

###各项特征名称

年龄:13级年龄组(_AGEG5YR见密码本)

1 = 18-24 / 2 = 25-29 / 3 = 30-34 / 4 = 35-39 / 5 = 40-44 / 6 = 45-49 / 7 = 50-54 / 8 = 55-59 / 9 = 60-64 / 10 = 65-69 / 11 = 70-74 / 12 = 75-79 / 13 = 80 岁或以上

Sex:患者性别(1:男;0:女)

HighChol:0 = 无高胆固醇 1 = 高胆固醇

CholCheck:0 = 5 年内未进行胆固醇检查 1 = 5 年内进行了胆固醇检查

BMI:身体质量指数

吸烟者:您一生中至少吸过 100 支香烟吗? [注:5 包 = 100 支香烟] 0 = 否 1 = 是

心脏病或发作:冠心病 (CHD) 或心肌梗塞 (MI) 0 = 否 1 = 是

PhysActivity:过去 30 天的身体活动 - 不包括工作 0 = 否 1 = 是

水果:每天吃水果 1 次或更多次 0 = 否 1 = 是

蔬菜:每天吃蔬菜 1 次或更多次 0 = 否 1 = 是

HvyAlcoholConsump:(成年男性每周 >=14 杯,成年女性每周 >=7 杯)0 = 否 1 = 是

GenHlth:总体而言,您的健康状况是: 等级 1-5 1 = 极好 2 = 非常好 3 = 好 4 = 一般 5 = 差

MentHlth:心理健康状况不佳的天数 1-30 天

PhysHlth:过去 30 天的身体疾病或受伤天数 1-30

DiffWalk:你走路或爬楼梯有严重困难吗? 0 = 否 1 = 是

中风:您曾经中风。 0 = 否,1 = 是

HighBP:0 = 不高,BP 1 = 高 BP

糖尿病:0 = 无糖尿病,1 = 糖尿病

发现数据量为七万多行,17个特征

查看数据类型和形状

接下来进行基本的统计性描述分析

从上面结果可以看出,从描述中,我们观察到BMI,PhysHlth,MentHlth的标准差高于1, 

最大值和最小值之间的差异相对较高 

下来查看缺失值

数据比较完整,无缺失值,若有的话可以可视化一下: 

#观察缺失值可视化
import missingno as msno
msno.matrix(df)

 

对特征分别进行可视化一下   比如各个特征的占比情况等等

import seaborn as sb
for i in df.columns:fig, ax = plt.subplots(1,1, figsize=(15, 6))sb.countplot(y = df[i],data=df, order=df[i].value_counts().index)plt.ylabel(i)plt.yticks(fontsize=13)plt.show()

 

# 按性别分组,计算平均年龄和BMI
grouped = df.groupby('Sex')[['Age', 'BMI']].mean()
grouped['BMI'].plot(kind='bar')
plt.title('Average BMI by Gender')
plt.xlabel('Gender')
plt.ylabel('Average BMI')
plt.show()

接下来看一下特征之间的相关系数

从上面热力图可以看出,最大相关性在0.38左右

再画出具体特征的分布

sb.barplot(x=df['Diabetes'],y=df['HighBP'],color='red')

 

下来用直方图表示

df.hist(figsize=(20,20))
plt.show()

分别画出响应变量糖尿病与其他特征的关系

接下来看一下糖尿病分布

plt.figure(figsize=(12,5))
sns.displot(x='PhysHlth', col='Diabetes' , data = df, kind="kde" ,color = 'pink')

 

接下来进行标准化

df1 = df
cols = ['BMI', 'PhysHlth']
for i in cols:df1[i] = (df1[i] - df1[i].min()) / (df1[i].max() - df1[i].min())

 下面开始机器学习部分

####划分训练集和验证集
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
print('Non normalized dataset')
x_train, x_test, y_train, y_test= train_test_split(x,y,test_size=0.25,random_state=101)
print('Training: ', x_train.shape[0])
print('Test: ', x_test.shape[0])
st_x= StandardScaler()  
x_train= st_x.fit_transform(x_train)    
x_test= st_x.transform(x_test)print('Normalized dataset')
x_train1, x_test1, y_train1, y_test1 = train_test_split(x1,y1,test_size=0.25,random_state=101)
print('Training: ', x_train1.shape[0])
print('Test: ', x_test1.shape[0])
from sklearn.neighbors import KNeighborsClassifier
import time
from sklearn.metrics import accuracy_score, confusion_matrix, classification_reportexec = []
exec1 = []
st = time.time()
knn = KNeighborsClassifier(n_neighbors=5)knn.fit(x_train, y_train)
accuracy = []
accuracy1 = []y_pred = knn.predict(x_test)cm = confusion_matrix(y_test, y_pred)
print(cm)
print('\n')
print(classification_report(y_test,y_pred))
print(accuracy_score(y_test, y_pred))
accuracy.append(accuracy_score(y_test, y_pred))
exec.append(time.time() - st)print('\n\nNormalized DataSet')
st = time.time()knn.fit(x_train1, y_train1)

 

使用其他模型试一下,最终结果如下

#决策树
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
model.fit(x_train, y_train)
model.score(x_test, y_test)

 

从以上结果可以看出,自适应提升Adaboost模型的效果还可以,达到了0.7486.其次是极端梯度提升,KNN以及最后的决策树。

三、总结

在这个项目中,我运用了机器学习的模型来预测一个人是否患有糖尿病,使用的模型包括自适应提升(AdaBoost)、K最近邻(KNN)和决策树(Decision Tree)等。自适应提升(AdaBoost)是一种集成学习方法.它通过不断迭代调整样本权重,训练出多个弱分类器,最终组合成一个强分类器。通过对不同算法的比较和分析,最终发现自适应提升最优的算法来进行预测,并根据预测结果来制定相应的医疗干预措施,以帮助预防和治疗糖尿病。。

创作不易,希望大家多点赞关注评论!!!(类似代码或报告定制可以私信)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/356330.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

matlab 路面点云标线提取

目录 一、算法原理二、代码实现三、结果展示四、参考链接本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、算法原理 算法来自本人自创。实现效果如下图所示,具体实现原理看代码即可。 二、代码实现 clc; cle…

与Vatee万腾平台同行,共创智能未来

在科技日新月异的今天,智能化已成为推动社会进步的重要力量。Vatee万腾平台,作为这一浪潮中的佼佼者,正以其独特的创新力和前瞻的视野,引领我们迈向智能未来。与Vatee万腾平台同行,我们不仅能享受到科技带来的便捷与舒…

DPDK与传统收发报文的区别

1.去除中断 传统的收发报文方式都必须采用硬中断来做通讯,每次硬中断大约消耗100微秒,这还不算因为终止上下文所带来的Cache Miss。 DPDK采用轮询模式驱动(PMD)。 PMD由用户空间的特定的驱动程序提供的API组成,用于对设备和它们相应的…

Java也能做OCR!SpringBoot 整合 Tess4J 实现图片文字识别

文章目录 1. 环境准备1.1 安装 Tesseract OCR 引擎1.2 引入 Tess4J 依赖 2. 创建 Spring Boot 项目2.1 初始化项目2.2 目录结构 3. 编写 OCR 功能代码3.1 创建服务层3.2 创建控制器层 4. 配置 Tesseract 语言包5. 运行和测试5.1 启动 Spring Boot 应用5.2 使用 Postman 或 cURL…

(三十)Flask之wtforms库【剖析源码上篇】

每篇前言: 🏆🏆作者介绍:【孤寒者】—CSDN全栈领域优质创作者、HDZ核心组成员、华为云享专家Python全栈领域博主、CSDN原力计划作者 🔥🔥本文已收录于Flask框架从入门到实战专栏:《Flask框架从入…

如何用 Google Chrome 浏览器浏览经过 XSLT 渲染的 XML 文件

对于经过XSLT渲染的XML文件,本来,可以直接用 IE (Internet Explorer) 打开,就能看到渲染之后的样子,很方便。但是后来,微软把 IE 换成了 Microsoft Edge,按理说这是比 IE 更先进的浏览器,可是偏…

Stable Diffusion vs DALL·E3

大模型技术论文不断,每个月总会新增上千篇。本专栏精选论文重点解读,主题还是围绕着行业实践和工程量产。若在某个环节出现卡点,可以回到大模型必备腔调或者LLM背后的基础模型新阅读。而最新科技(Mamba,xLSTM,KAN)则提…

CSS详解

盒子模型&#xff08;box-sizing&#xff09; line-height与height CSS选择符和可继承属性 属性选择符&#xff1a; 示例&#xff1a;a[target"_blank"] { text-decoration: none; }&#xff08;选择所有target"_blank"的<a>元素&#xff09; /* 选…

NeRF从入门到放弃3: EmerNeRF

https://github.com/NVlabs/EmerNeRF 该方法是Nvidia提出的&#xff0c;其亮点是不需要额外的2D、3Dbox先验&#xff0c;可以自动解耦动静field。 核心思想&#xff1a; 1. 动、静filed都用hash grid编码&#xff0c;动态filed比静态多了时间t&#xff0c;静态的hash编码输入是…

项目启动 | 盘古信息助力鼎阳科技开启智能制造升级新征程

在全球数字化浪潮不断涌动的背景下&#xff0c;电子信息行业正迎来转型升级的关键阶段。近日&#xff0c;盘古信息与深圳市鼎阳科技股份有限公司&#xff08;简称“鼎阳科技”&#xff0c;股票代码&#xff1a;688112&#xff09;正式启动了IMS数字化智能制造工厂项目&#xff…

windows环境下,怎么查看本机的IP、MAC地址和端口占用情况

1.输入ipconfig,按回车。即查看了IP地址&#xff0c;子码掩码&#xff0c;网关信息。 2.输入ipconfig/all,按回车。即查看了包含IP地址&#xff0c;子码掩码&#xff0c;网关信息以及MAC地址 3.我们有时在启动应用程序的时候提示端口被占用&#xff0c;如何知道谁占有了我们需要…

C#实现卷积平滑(图像处理)

在C#中使用卷积滤波器来实现图像平滑处理&#xff0c;我们可以使用 System.Drawing 库来操作图像。下面是一个具体的示例&#xff0c;演示如何加载图像、应用卷积平滑滤波器&#xff0c;并保存处理后的图像。 1. 安装 System.Drawing.Common 首先&#xff0c;确保你已经安装了…

【Leetcode】2663. 字典序最小的美丽字符串

题目 题目链接&#x1f517;如果一个字符串满足以下条件&#xff0c;则称其为 美丽字符串 &#xff1a; 它由英语小写字母表的前 k 个字母组成。它不包含任何长度为 2 或更长的回文子字符串。 给你一个长度为 n 的美丽字符串 s 和一个正整数 k 。请你找出并返回一个长度为 n…

Python | Leetcode Python题解之第166题分数到小数

题目&#xff1a; 题解&#xff1a; class Solution:def fractionToDecimal(self, numerator: int, denominator: int) -> str:if numerator % denominator 0:return str(numerator // denominator)s []if (numerator < 0) ! (denominator < 0):s.append(-)# 整数部…

软件缺陷及JIRA工具

一、软件缺陷及跟踪流程 1&#xff0c;软件缺陷信息 案例 &#xff08;1&#xff09;缺陷报告的基本内容 缺陷的标题 预置条件 重现步骤 期望结果 实际结果 &#xff08;2&#xff09;软件缺陷的状态 新建 打开 修复 关闭 &#xff08;3&#xff09;软件缺陷的严重程度 …

JAVA医院绩效考核系统源码 功能特点:大型医院绩效考核系统源码

JAVA医院绩效考核系统源码 功能特点&#xff1a;大型医院绩效考核系统源码 医院绩效管理系统主要用于对科室和岗位的工作量、工作质量、服务质量进行全面考核&#xff0c;并对科室绩效工资和岗位绩效工资进行核算的系统。医院绩效管理系统开发主要用到的管理工具有RBRVS、DRGS…

云徙科技助力竹叶青实现用户精细化运营,拉动全渠道销售额增长

竹叶青茶以其别具一格的风味与深厚的历史底蕴&#xff0c;一直被誉为茶中瑰宝。历经千年的传承与创新&#xff0c;竹叶青不仅坚守着茶叶品质的极致追求&#xff0c;更在数字化的浪潮中&#xff0c;率先打破传统&#xff0c;以科技力量赋能品牌&#xff0c;成为茶行业的领军者。…

Python抓取高考网图片

Python抓取高考网图片 一、项目介绍二、完整代码一、项目介绍 本次采集的目标是高考网(http://www.gaokao.com/gkpic/)的图片,实现图片自动下载。高考网主页如下图: 爬取的流程包括寻找数据接口,发送请求,解析图片链接,向图片链接发送请求获取数据,最后保存数据。 二…

示例:WPF中在没有MouseDoubleClick的控件中如何识别双击

一、目的&#xff1a;由于MouseDoubleClick控件是在Control中实现&#xff0c;那么在底层控件如Grid中想要类似功能如何实现&#xff0c;这里通过MouseDown的事MouseButtonEventArgs参数去实现 二、实现 定义Grid并注册Grid的MouseDown事件 <Grid Background"Transpa…

GIT回滚

1. 使用 git revert git revert 命令会创建一个新的提交&#xff0c;这个提交会撤销指定提交的更改。这通常用于公共分支&#xff08;如 main 或 master&#xff09;&#xff0c;因为它不会重写历史。 git revert HEAD # 撤销最近的提交 # 或者指定一个特定的提交哈希值 …