【存储中间件】Redis核心技术与实战(四):Redis高并发高可用(Redis集群 Smart客户端、集群原理)

文章目录

  • Redis集群
    • Smart客户端
      • smart客户端原理
      • ASK 重定向
      • 集群下的Jedis客户端
        • Hash tags
    • 集群原理
      • 节点通信
        • 通信流程
        • Gossip 消息
        • 节点选择
      • 故障转移
        • 故障发现
          • 主观下线
          • 客观下线
        • 故障恢复
          • 资格检查
          • 准备选举时间
          • 发起选举
          • 选举投票
          • 替换主节点
        • 故障转移时间
      • 集群不可用判定
      • 集群读写分离

在这里插入图片描述
个人主页:道友老李
欢迎加入社区:道友老李的学习社区

Redis集群

Smart客户端

smart客户端原理

大多数开发语言的Redis客户端都采用Smart 客户端支持集群协议。Smart客户端通过在内部维护 slot →node的映射关系,本地就可实现键到节点的查找,从而保证IO效率的最大化,而MOVED重定向负责协助Smart客户端更新slot →node映射。Java的Jedis就默认实现了这个功能

ASK 重定向

1.客户端ASK 重定向流程

Redis集群支持在线迁移槽(slot)和数据来完成水平伸缩,当slot对应的数据从源节点到目标节点迁移过程中,客户端需要做到智能识别,保证键命令可正常执行。例如当一个slot数据从源节点迁移到目标节点时,期间可能出现一部分数据在源节点,而另一部分在目标节点。

当出现上述情况时,客户端键命令执行流程将发生变化:

1)客户端根据本地slots缓存发送命令到源节点,如果存在键对象则直接执行并返回结果给客户端。

2)如果键对象不存在,则可能存在于目标节点,这时源节点会回复ASK重定向异常。格式如下:(error) ASK (slot} {targetIP}:{targetPort}。

3)客户端从ASK重定向异常提取出目标节点信息,发送asking命令到目标节点打开客户端连接标识,再执行键命令。如果存在则执行,不存在则返回不存在信息。

ASK与MOVED虽然都是对客户端的重定向控制,但是有着本质区别。ASK重定向说明集群正在进行slot数据迁移,客户端无法知道什么时候迁移完成,因此只能是临时性的重定向,客户端不会更新slots缓存。但是MOVED重定向说明键对应的槽已经明确指定到新的节点,因此需要更新slots缓存。

集群下的Jedis客户端

参见模块redis-cluster。

同时集群下的Jedis客户端只能支持有限的有限的批量操作,必须要求所有key的slot值相等。这时可以考虑使用hash tags。

Hash tags

集群支持hash tags功能,即可以把一类key定位到同一个slot,tag的标识目前不支持配置,只能使用{},redis处理hash tag的逻辑也很简单,redis只计算从第一次出现{,到第一次出现}的substring的hash值,substring为空,则仍然计算整个key的值。

比如这两个键{user1000}.following 和 {user1000}.followers 会被哈希到同一个哈希槽里,因为只有 user1000 这个子串会被用来计算哈希值。

对于 foo{}{bar} 这个键,整个键都会被用来计算哈希值,因为第一个出现的 { 和它右边第一个出现的 } 之间没有任何字符。

对于 foo{bar}{zap} 这个键,用来计算哈希值的是 bar 这个子串。

image.png

我们在使用hashtag特性时,一定要注意,不能把key的离散性变得非常差。

比如,没有利用hashtag特性之前,key是这样的:mall:sale:freq:ctrl:860000000000001,很明显这种key由于与用户相关,所以离散性非常好。

而使用hashtag以后,key是这样的:mall:sale:freq:ctrl:{860000000000001},这种key还是与用户相关,所以离散性依然非常好。

我们千万不要这样来使用hashtag特性,例如将key设置为:mall:{sale:freq:ctrl}:860000000000001。

这样的话,无论有多少个用户多少个key,其{}中的内容完全一样都是sale:freq:ctrl,也就是说,所有的key都会落在同一个slot上,导致整个Redis集群出现严重的倾斜问题。

集群原理

节点通信

通信流程

在分布式存储中需要提供维护节点元数据信息的机制,所谓元数据是指:节点负责哪些数据,是否出现故障等状态信息。常见的元数据维护方式分为:集中式和P2P方式。Redis集群采用P2P的Gossip(流言)协议,Gossip协议工作原理就是节点彼此不断通信交换信息,一段时间后所有的节点都会知道集群完整的信息,这种方式类似流言传播。

通信过程说明:

1)集群中的每个节点都会单独开辟一个TCP通道,用于节点之间彼此通信,通信端口号在基础端口上加10000。

2)每个节点在固定周期内通过特定规则选择几个节点发送ping消息。

3)接收到ping消息的节点用pong消息作为响应。

集群中每个节点通过一定规则挑选要通信的节点,每个节点可能知道全部节点,也可能仅知道部分节点,只要这些节点彼此可以正常通信,最终它们会达到一致的状态。当节点出故障、新节点加入、主从角色变化、槽信息变更等事件发生时,通过不断的ping/pong消息通信,经过一段时间后所有的节点都会知道整个集群全部节点的最新状态,从而达到集群状态同步的目的。

Gossip 消息

Gossip协议的主要职责就是信息交换。信息交换的载体就是节点彼此发送的Gossip消息,了解这些消息有助于我们理解集群如何完成信息交换。

常用的Gossip消息可分为:ping消息、pong消息、meet消息、fail消息等,

meet消息:

用于通知新节点加入。消息发送者通知接收者加入到当前集群,meet消息通信正常完成后,接收节点会加入到集群中并进行周期性的ping、pong消息交换。

ping消息:

集群内交换最频繁的消息,集群内每个节点每秒向多个其他节点发送ping消息,用于检测节点是否在线和交换彼此状态信息。ping消息发送封装了自身节点和部分其他节点的状态数据。

pong消息:

当接收到ping、meet消息时,作为响应消息回复给发送方确认消息正常通信。pong消息内部封装了自身状态数据。节点也可以向集群内广播自身的pong消息来通知整个集群对自身状态进行更新。

fail消息:

当节点判定集群内另一个节点下线时,会向集群内广播一个fail消息,其他节点接收到fail消息之后把对应节点更新为下线状态。

所有的消息格式划分为:消息头和消息体。消息头包含发送节点自身状态数据,接收节点根据消息头就可以获取到发送节点的相关数据。

集群内所有的消息都采用相同的消息头结构clusterMsg,它包含了发送节点关键信息,如节点id、槽映射、节点标识(主从角色,是否下线)等。消息体在Redis内部采用clusterMsg Data 结构声明。

消息体clusterMsgData定义发送消息的数据,其中ping,meet、pong都采用clusterMsgDataGossip数组作为消息体数据,实际消息类型使用消息头的type属性区分。每个消息体包含该节点的多个clusterMsgDataGossip结构数据,用于信息交换。

当接收到ping、meet消息时,接收节点会解析消息内容并根据自身的识别情况做出相应处理。

节点选择

虽然Gossip协议的信息交换机制具有天然的分布式特性,但它是有成本的。由于内部需要频繁地进行节点信息交换,而ping/pong消息会携带当前节点和部分其他节点的状态数据,势必会加重带宽和计算的负担。Redis集群内节点通信采用固定频率(定时任务每秒执行10次)。

因此节点每次选择需要通信的节点列表变得非常重要。通信节点选择过多虽然可以做到信息及时交换但成本过高。节点选择过少会降低集群内所有节点彼此信息交换频率,从而影响故障判定、新节点发现等需求的速度。因此Redis集群的Gossip协议需要兼顾信息交换实时性和成本开销。

消息交换的成本主要体现在单位时间选择发送消息的节点数量和每个消息携带的数据量。

1.选择发送消息的节点数量

集群内每个节点维护定时任务默认间隔1秒,每秒执行10次,定时任务里每秒随机选取5个节点,找出最久没有通信的节点发送ping消息,用于保证 Gossip信息交换的随机性。同时每100毫秒都会扫描本地节点列表,如果发现节点最近一次接受pong消息的时间大于cluster_node_timeout/2,则立刻发送ping消息,防止该节点信息太长时间未更新。

根据以上规则得出每个节点每秒需要发送ping消息的数量= 1 +10

  • num(node.pong_received >cluster_node_timeout/2),因此cluster_node_timeout参数对消息发送的节点数量影响非常大。当我们的带宽资源紧张时,可以适当调大这个参数,如从默认15秒改为30秒来降低带宽占用率。过度调大cluster_node_timeout 会影响消息交换的频率从而影响故障转移、槽信息更新、新节点发现的速度。因此需要根据业务容忍度和资源消耗进行平衡。同时整个集群消息总交换量也跟节点数成正比。

⒉消息数据量

每个ping消息的数据量体现在消息头和消息体中,其中消息头主要占用空间的字段是myslots [CLUSTER_SLOTS/8],占用2KB,这块空间占用相对固定。消息体会携带一定数量的其他节点信息用于信息交换。

根消息体携带数据量跟集群的节点数息息相关,更大的集群每次消息通信的成本也就更高,因此对于Redis集群来说并不是大而全的集群更好。

故障转移

Redis集群自身实现了高可用。高可用首先需要解决集群部分失败的场景:当集群内少量节点出现故障时通过自动故障转移保证集群可以正常对外提供服务。

故障发现

当集群内某个节点出现问题时,需要通过一种健壮的方式保证识别出节点是否发生了故障。Redis集群内节点通过ping/pong消息实现节点通信,消息不但可以传播节点槽信息,还可以传播其他状态如:主从状态、节点故障等。因此故障发现也是通过消息传播机制实现的,主要环节包括:主观下线(pfail)和客观下线(fail)。

主观下线:

指某个节点认为另一个节点不可用,即下线状态,这个状态并不是最终的故障判定,只能代表一个节点的意见,可能存在误判情况。

客观下线:

指标记一个节点真正的下线,集群内多个节点都认为该节点不可用,从而达成共识的结果。如果是持有槽的主节点故障,需要为该节点进行故障转移。

主观下线

集群中每个节点都会定期向其他节点发送ping消息,接收节点回复pong消息作为响应。如果在cluster-node-timeout时间内通信一直失败,则发送节点会认为接收节点存在故障,把接收节点标记为主观下线(pfail)状态。

流程说明:

1)节点a发送ping消息给节点b,如果通信正常将接收到pong消息,节点 a更新最近一次与节点b的通信时间。

2)如果节点 a与节点b通信出现问题则断开连接,下次会进行重连。如果一直通信失败,则节点a记录的与节点b最后通信时间将无法更新。

3)节点a内的定时任务检测到与节点b最后通信时间超高cluster-node-timeout时,更新本地对节点b的状态为主观下线(pfail)。

主观下线简单来讲就是,当cluster-note-timeout时间内某节点无法与另一个节点顺利完成ping消息通信时,则将该节点标记为主观下线状态。每个节点内的clusterstate结构都需要保存其他节点信息,用于从自身视角判断其他节点的状态。

Redis集群对于节点最终是否故障判断非常严谨,只有一个节点认为主观下线并不能准确判断是否故障。

比如节点6379与6385通信中断,导致6379判断6385为主观下线状态,但是6380与6385节点之间通信正常,这种情况不能判定节点6385发生故障。因此对于一个健壮的故障发现机制,需要集群内大多数节点都判断6385故障时,才能认为6385确实发生故障,然后为6385节点进行故障转移。而这种多个节点协作完成故障发现的过程叫做客观下线。

客观下线

当某个节点判断另一个节点主观下线后,相应的节点状态会跟随消息在集群内传播。

ping/pong消息的消息体会携带集群1/10的其他节点状态数据,当接受节点发现消息体中含有主观下线的节点状态时,会在本地找到故障节点的ClusterNode结构,保存到下线报告链表中。

通过Gossip消息传播,集群内节点不断收集到故障节点的下线报告。当半数以上持有槽的主节点都标记某个节点是主观下线时。触发客观下线流程。这里有两个问题:

1)为什么必须是负责槽的主节点参与故障发现决策?因为集群模式下只有处理槽的主节点才负责读写请求和集群槽等关键信息维护,而从节点只进行主节点数据和状态信息的复制。

2)为什么半数以上处理槽的主节点?必须半数以上是为了应对网络分区等原因造成的集群分割情况,被分割的小集群因为无法完成从主观下线到客观下线这一关键过程,从而防止小集群完成故障转移之后继续对外提供服务。

尝试客观下线

集群中的节点每次接收到其他节点的pfail状态,都会尝试触发客观下线,

流程说明:

1)首先统计有效的下线报告数量,如果小于集群内持有槽的主节点总数的一半则退出。

2)当下线报告大于槽主节点数量一半时,标记对应故障节点为客观下线状态。

3)向集群广播一条fail消息,通知所有的节点将故障节点标记为客观下线,fail消息的消息体只包含故障节点的ID。

广播fail消息是客观下线的最后一步,它承担着非常重要的职责:

通知集群内所有的节点标记故障节点为客观下线状态并立刻生效。

通知故障节点的从节点触发故障转移流程。

故障恢复

故障节点变为客观下线后,如果下线节点是持有槽的主节点则需要在它的从节点中选出一个替换它,从而保证集群的高可用。下线主节点的所有从节点承担故障恢复的义务,当从节点通过内部定时任务发现自身复制的主节点进入客观下线时,将会触发故障恢复流程。

资格检查

每个从节点都要检查最后与主节点断线时间,判断是否有资格替换故障的主节点。如果从节点与主节点断线时间超过cluster-node-time * cluster-slave-validity-factor,则当前从节点不具备故障转移资格。参数cluster-slave-validity-factor用于从节点的有效因子,默认为10。

准备选举时间

当从节点符合故障转移资格后,更新触发故障选举的时间,只有到达该时间后才能执行后续流程。

这里之所以采用延迟触发机制,主要是通过对多个从节点使用不同的延迟选举时间来支持优先级问题。复制偏移量越大说明从节点延迟越低,那么它应该具有更高的优先级来替换故障主节点。

所有的从节点中复制偏移量最大的将提前触发故障选举流程。

主节点b进入客观下线后,它的三个从节点根据自身复制偏移量设置延迟选举时间,如复制偏移量最大的节点slave b-1延迟1秒执行,保证复制延迟低的从节点优先发起选举。

发起选举

当从节点定时任务检测到达故障选举时间(failover_auth_time)到达后,发起选举流程如下:

(1)更新配置纪元

配置纪元是一个只增不减的整数,每个主节点自身维护一个配置纪元(clusterNode .configEpoch)标示当前主节点的版本,所有主节点的配置纪元都不相等,从节点会复制主节点的配置纪元。整个集群又维护一个全局的配置纪元(clusterstate.currentEpoch),用于记录集群内所有主节点配置纪元的最大版本。执行cluster info命令可以查看配置纪元信息:

image.png

配置纪元的主要作用:

标示集群内每个主节点的不同版本和当前集群最大的版本。

每次集群发生重要事件时,这里的重要事件指出现新的主节点(新加入的或者由从节点转换而来),从节点竞争选举。都会递增集群全局的配置纪元并赋值给相关主节点,用于记录这一关键事件。

主节点具有更大的配置纪元代表了更新的集群状态,因此当节点间进行ping/pong消息交换时,如出现slots等关键信息不一致时,以配置纪元更大的一方为准,防止过时的消息状态污染集群。

配置纪元的应用场景有:

新节点加入。槽节点映射冲突检测。从节点投票选举冲突检测。

选举投票

只有持有槽的主节点才会处理故障选举消息(FAILOVER_AUTH_REQUEST),因为每个持有槽的节点在一个配置纪元内都有唯一的一张选票,当接到第一个请求投票的从节点消息时回复FAILOVER_AUTH_ACK消息作为投票,之后相同配置纪元内其他从节点的选举消息将忽略。

投票过程其实是一个领导者选举的过程,如集群内有N个持有槽的主节点代表有N张选票。由于在每个配置纪元内持有槽的主节点只能投票给一个从节点,因此只能有一个从节点获得 N/2+1的选票,保证能够找出唯一的从节点。

Redis集群没有直接使用从节点进行领导者选举,主要因为从节点数必须大于等于3个才能保证凑够N/2+1个节点,将导致从节点资源浪费。使用集群内所有持有槽的主节点进行领导者选举,即使只有一个从节点也可以完成选举过程。

当从节点收集到N/2+1个持有槽的主节点投票时,从节点可以执行替换主节点操作,例如集群内有5个持有槽的主节点,主节点b故障后还有4个,当其中一个从节点收集到3张投票时代表获得了足够的选票可以进行替换主节点操作,。

投票作废:每个配置纪元代表了一次选举周期,如果在开始投票之后的cluster-node-timeout*2时间内从节点没有获取足够数量的投票,则本次选举作废。从节点对配置纪元自增并发起下一轮投票,直到选举成功为止。

替换主节点

当从节点收集到足够的选票之后,触发替换主节点操作:

1)当前从节点取消复制变为主节点。

2)执行clusterDelslot 操作撤销故障主节点负责的槽,并执行clusterAddSlot把这些槽委派给自己。

3)向集群广播自己的pong消息,通知集群内所有的节点当前从节点变为主节点并接管了故障主节点的槽信息。

故障转移时间

在介绍完故障发现和恢复的流程后,这时我们可以估算出故障转移时间:

1)主观下线(pfail)识别时间=cluster-node-timeout。

2)主观下线状态消息传播时间<=cluster-node-timeout/2。消息通信机制对超过cluster-node-timeout/2未通信节点会发起ping消息,消息体在选择包含哪些节点时会优先选取下线状态节点,所以通常这段时间内能够收集到半数以上主节点的pfail 报告从而完成故障发现。

3)从节点转移时间<=1000毫秒。由于存在延迟发起选举机制,偏移量最大的从节点会最多延迟1秒发起选举。通常第一次选举就会成功,所以从节点执行转移时间在1秒以内。

根据以上分析可以预估出故障转移时间,如下:

failover-time(毫秒)≤cluster-node-timeout

  • cluster-node-timeout/2 + 1000

因此,故障转移时间跟cluster-node-timeout参数息息相关,默认15秒。配置时可以根据业务容忍度做出适当调整,但不是越小越好。

集群不可用判定

为了保证集群完整性,默认情况下当集群16384个槽任何一个没有指派到节点时整个集群不可用。执行任何键命令返回( error)CLUSTERDOWN Hash slot not served错误。这是对集群完整性的一种保护措施,保证所有的槽都指派给在线的节点。但是当持有槽的主节点下线时,从故障发现到自动完成转移期间整个集群是不可用状态,对于大多数业务无法容忍这种情况,因此可以将参数cluster-require-full-coverage配置为no,当主节点故障时只影响它负责槽的相关命令执行,不会影响其他主节点的可用性。

但是从集群的故障转移的原理来说,集群会出现不可用,当:

1、当访问一个 Master 和 Slave 节点都挂了的时候,cluster-require-full-coverage=yes,会报槽无法获取。

2、集群主库半数宕机(根据 failover 原理,fail 掉一个主需要一半以上主都投票通过才可以)。

另外,当集群 Master 节点个数小于 3 个的时候,或者集群可用节点个数为偶数的时候,基于 fail 的这种选举机制的自动主从切换过程可能会不能正常工作,一个是标记 fail 的过程,一个是选举新的 master 的过程,都有可能异常。

集群读写分离

1.只读连接

集群模式下从节点不接受任何读写请求,发送过来的键命令会重定向到负责槽的主节点上(其中包括它的主节点)。当需要使用从节点分担主节点读压力时,可以使用readonly命令打开客户端连接只读状态。之前的复制配置slave-read-only在集群模式下无效。当开启只读状态时,从节点接收读命令处理流程变为:如果对应的槽属于自己正在复制的主节点则直接执行读命令,否则返回重定向信息。

readonly命令是连接级别生效,因此每次新建连接时都需要执行readonly开启只读状态。执行readwrite命令可以关闭连接只读状态。

2.读写分离

集群模式下的读写分离,同样会遇到:复制延迟,读取过期数据,从节点故障等问题。针对从节点故障问题,客户端需要维护可用节点列表,集群提供了cluster slaves {nodeld}命令,返回nodeId对应主节点下所有从节点信息,命令如下:

cluster slave
41ca2d569068043a5f2544c598edd1e45a0c1f91

解析以上从节点列表信息,排除fail状态节点,这样客户端对从节点的故障判定可以委托给集群处理,简化维护可用从节点列表难度。

同时集群模式下读写分离涉及对客户端修改如下:

1)维护每个主节点可用从节点列表。

2)针对读命令维护请求节点路由。

3)从节点新建连接开启readonly状态。

集群模式下读写分离成本比较高,可以直接扩展主节点数量提高集群性能,一般不建议集群模式下做读写分离。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/35655.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【接口耗时】⭐️自定义拦截器实现接口耗时统计

&#x1f4a5;&#x1f4a5;✈️✈️欢迎阅读本文章❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;本篇文章阅读大约耗时三分钟。 ⛳️motto&#xff1a;不积跬步、无以千里 &#x1f4cb;&#x1f4cb;&#x1f4cb;本文目录如下&#xff1a;&#x1f381;&#x1f381;&a…

杨校老师课堂之编程入门与软件安装【图文笔记】

亲爱的同学们&#xff0c;热烈欢迎踏入青少年编程的奇妙世界&#xff01; 我是你们的授课老师杨校 &#xff0c;期待与大家一同开启编程之旅。 1. 轻松叩开编程之门 1.1 程序的定义及生活中的应用 程序是人与计算机沟通的工具。在日常生活中&#xff0c;像手机里的各类 APP、电…

【从零开始】Air780EPM的LuatOS二次开发——OneWire协议调试注意事项!

当涉及到与传感器、执行器等外部设备交互时&#xff0c;OneWire协议的高效调试成为决定项目成败的关键环节。OneWire协议&#xff08;单总线协议&#xff09;以其仅需一根数据线即可实现设备通信的极简特性&#xff0c;被广泛应用于温度传感器、身份识别模块等场景。 一、LuatO…

redis数据结构、多路复用、持久化---java

数据结构 Redis 提供了丰富的数据类型&#xff0c;常见的有五种数据类型&#xff1a;String&#xff08;字符串&#xff09;&#xff0c;Hash&#xff08;哈希&#xff09;&#xff0c;List&#xff08;列表&#xff09;&#xff0c;Set&#xff08;集合&#xff09;、Zset&am…

vue3之写一个aichat ----vite.config.js

vite.config.js的CSS配置 postcss-pxtorem 开发响应式网页的时候需要用到postcss-pxtorem amfe-flexible amfe-flexible是由阿里团队开发的一个库&#xff0c;它可以根据设备的屏幕宽度去动态调整HTML根元素()的字体大小&#xff0c;这意味着无论用户使用什么尺寸的设备访问你…

强化学习(赵世钰版)-学习笔记(8.值函数方法)

本章是算法与方法的第四章&#xff0c;是TD算法的拓展&#xff0c;本质上是将状态值与行为值的表征方式&#xff0c;从离散的表格形式&#xff0c;拓展到了连续的函数形式。 表格形式的优点是直观&#xff0c;便于分析&#xff0c;缺点是数据量较大或者连续性状态或者行为空间时…

C++模版(进阶)

文章目录 一、非类型模版参数二、模版的特化2.1 概念2.2 函数模版特化2.2.1 函数模版特化为指针类型注意事项 2.3 类模版特化2.3.1 全特化2.3.2 偏特化(半特化)2.3.3 类模板特化应用示例 三、模版分离编译3.1 什么是分离编译&#xff1f;3.2 模版的分离编译3.3 解决方法! 四、模…

Linux配置yum仓库,服务控制,防火墙

一、yum仓库 1.在安装软件时&#xff0c;首先第一步就是要考虑软件的版本的问题&#xff01; 2.软件的安装&#xff1a;最安全可靠的方法就是去软件对应的官网上查看安装手册&#xff08;包括的软件的下载&#xff09; 红帽系软件安装的常见的3种方式 &#xff08;1&#x…

布谷直播系统源码开发实战:从架构设计到性能优化

作为山东布谷科技的一名技术研发人员&#xff0c;我参与了多个直播系统平台从0到1的开发和搭建&#xff0c;也见证了直播行业从萌芽到爆发的全过程。今天&#xff0c;我想从研发角度&#xff0c;分享一些直播系统软件开发的经验和心得&#xff0c;希望能对大家有所帮助。 一、 …

实战设计模式之解释器模式

概述 作为一种行为设计模式&#xff0c;解释器模式提供了一种方法来定义语言的文法规则&#xff0c;并通过这些规则解析和处理特定类型的语言句子。简单来说&#xff0c;解释器模式允许我们定义一个代表某种语言中语法规则的对象结构&#xff0c;从而能够根据这些规则理解并处理…

物联网边缘计算网关是什么?

在物联网的浩瀚架构中&#xff0c;边缘计算网关宛如一位坚毅的前沿哨兵&#xff0c;默默守护着数据处理与传输的关键防线&#xff0c;为整个物联网系统的高效运转发挥着不可或缺的作用。 一、边缘计算网关的定义与基本功能 边缘计算网关是一种智能设备&#xff0c;它被部署在…

计算机视觉算法实战——障碍物识别(主页有源码)

✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ ​​ ​​​​​​ ​ ​ 1. 引言 计算机视觉是人工智能领域的一个重要分支&#xff0c;旨在通过计算机模拟人类的视觉系统&#xff0c;从…

Win11锁屏后显示“天气、市场、广告”如何取消显示

关闭方法&#xff1a;设置>个性化>锁屏界面>锁屏界面状态>"无"。 方法一&#xff1a;通过“个性化”设置 打开“设置”应用&#xff1a; 点击屏幕左下角的“开始”按钮&#xff08;Windows 图标&#xff09;。点击齿轮状的“设置”图标。或者按下 Win I…

10天速通强化学习-008

TRPO 思考-TRPO-在线策略-给定信任区域防止更新不稳定 Actor-Critic网络随着网络深度的增加&#xff0c;步长太长&#xff0c;梯度更新会变差。改变方法-增加信任区域。(trust region policy optimization)-TRPO算法&#xff1a; 核心思想&#xff1a; 是在每次迭代中&…

整合百款经典街机游戏的模拟器介绍

对于80、90后而言&#xff0c;街机游戏承载着童年的欢乐记忆。今天要给大家介绍一款超棒的软件——「MXui街机厅经典游戏101款」&#xff0c;它能带你重回那段热血沸腾的街机时光。 「MXui街机厅经典游戏101款」是一款绿色免安装的街机模拟器&#xff0c;体积约1.39G。无需繁琐…

springboot第三站(1) web开发引入

目录 1.简介 2.SpringBoot对静态资源的映射规则 3.模版引擎 1.简介 使用SpringBoot&#xff1b; 1&#xff09;、创建SpringBoot应用&#xff0c;选中我们需要的模块&#xff1b; 2&#xff09;、SpringBoot已经默认将这些场景配置好了&#xff0c;只需要在配置文件中指定…

12-二叉树-二叉树高度(给定前序和中序确定二叉树)

题目 来源 23. 二叉树的高度 思路 其实跟09那篇很像&#xff0c;反正核心就是要通过前序和中序来建树&#xff0c;只不过现在多了一个返回值&#xff1b;因为建树的时候&#xff0c;其实左子树和右子树的深度就可以知道。其余详见代码。 代码 /* 前序遍历根左右,中序&…

PSI5接口

文章目录 前言PSI5接口简介操作模式命名规则异步操作模式&#xff08;PSI5-A&#xff09;同步操作模式&#xff08;PSI5-P&#xff09; 传感器->ECU物理层&#xff08;位编码&#xff09;数据链路层数据帧帧格式串行消息帧10bits 传感器帧定义超10bits传感器帧定义 ECU->…

垃圾处理全流程监管平台

在当前城市化进程中&#xff0c;垃圾处理已成为城市管理的重要课题。随着技术的发展&#xff0c;垃圾处理全流程监管平台的建设显得尤为重要。该平台能够实现垃圾从产生、收集、运输到最终处理的全流程监管&#xff0c;提高垃圾处理效率&#xff0c;促进资源回收利用&#xff0…

【Linux编程】IPC之消息队列从踩坑到实战:核心原理、实战案例与C++封装详解(含完整代码)

一、消息队列基础概念 消息队列是Linux系统提供的一种进程间通信&#xff08;IPC&#xff09;机制&#xff0c;具有以下特点&#xff1a; 消息以链表形式存放在内核中每个消息包含类型标识&#xff08;mtype&#xff09;支持多生产者/多消费者模式消息总长度受限于系统配置&a…