昇思25天学习打卡营第4天|网络构建|函数式自动微分

学AI还能赢奖品?每天30分钟,25天打通AI任督二脉 (qq.com)

网络构建

神经网络模型是由神经网络层和Tensor操作构成的,mindspore.nn提供了常见神经网络层的实现,在MindSpore中,Cell类是构建所有网络的基类,也是网络的基本单元。一个神经网络模型表示为一个Cell,它由不同的子Cell构成。使用这样的嵌套结构,可以简单地使用面向对象编程的思维,对神经网络结构进行构建和管理。

下面我们将构建一个用于Mnist数据集分类的神经网络模型。

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
import mindspore
from mindspore import nn, ops

定义模型类

当我们定义神经网络时,可以继承nn.Cell类,在__init__方法中进行子Cell的实例化和状态管理,在construct方法中实现Tensor操作。

construct意为神经网络(计算图)构建,相关内容详见使用静态图加速。

class Network(nn.Cell):def __init__(self):super().__init__()self.flatten = nn.Flatten()self.dense_relu_sequential = nn.SequentialCell(nn.Dense(28*28, 512, weight_init="normal", bias_init="zeros"),nn.ReLU(),nn.Dense(512, 512, weight_init="normal", bias_init="zeros"),nn.ReLU(),nn.Dense(512, 10, weight_init="normal", bias_init="zeros"))def construct(self, x):x = self.flatten(x)logits = self.dense_relu_sequential(x)return logits

构建完成后,实例化Network对象,并查看其结构。

model = Network()
print(model)

我们构造一个输入数据,直接调用模型,可以获得一个十维的Tensor输出,其包含每个类别的原始预测值。

model.construct()方法不可直接调用。

X = ops.ones((1, 28, 28), mindspore.float32)
logits = model(X)
# print logits
logits

在此基础上,我们通过一个nn.Softmax层实例来获得预测概率。

pred_probab = nn.Softmax(axis=1)(logits)
y_pred = pred_probab.argmax(1)
print(f"Predicted class: {y_pred}")

使用nn.Cell作为基类来定义自己的神经网络模型Network。在__init__方法中初始化所需的神经网络层,并在construct方法中定义前向传播过程。

实例化自定义的网络类Network,调用模型实例model处理输入数据X,得到预测输出logits。通过nn.Softmax转换为各分类的概率。

模型层

本节中我们分解上节构造的神经网络模型中的每一层。首先我们构造一个shape为(3, 28, 28)的随机数据(3个28x28的图像),依次通过每一个神经网络层来观察其效果。

input_image = ops.ones((3, 28, 28), mindspore.float32)
print(input_image.shape)

nn.Flatten

实例化nn.Flatten层,将28x28的2D张量转换为784大小的连续数组。

flatten = nn.Flatten()
flat_image = flatten(input_image)
print(flat_image.shape)

nn.Dense

nn.Dense为全连接层,其使用权重和偏差对输入进行线性变换。

layer1 = nn.Dense(in_channels=28*28, out_channels=20)
hidden1 = layer1(flat_image)
print(hidden1.shape)

nn.ReLU¶

nn.ReLU层给网络中加入非线性的激活函数,帮助神经网络学习各种复杂的特征。

print(f"Before ReLU: {hidden1}\n\n")
hidden1 = nn.ReLU()(hidden1)
print(f"After ReLU: {hidden1}")

nn.SequentialCell¶

nn.SequentialCell是一个有序的Cell容器。输入Tensor将按照定义的顺序通过所有Cell。我们可以使用SequentialCell来快速组合构造一个神经网络模型。

seq_modules = nn.SequentialCell(flatten,layer1,nn.ReLU(),nn.Dense(20, 10)
)logits = seq_modules(input_image)
print(logits.shape)

nn.Softmax¶

最后使用nn.Softmax将神经网络最后一个全连接层返回的logits的值缩放为[0, 1],表示每个类别的预测概率。axis指定的维度数值和为1。

softmax = nn.Softmax(axis=1)
pred_probab = softmax(logits)

nn.Flatten展平输入数据,nn.Dense全连接层,nn.ReLU非线性激活函数,nn.SequentialCell有序地组合这些层,形成一个完整的网络结构。nn.Softmax将网络的原始输出转换为概率分布,以进行分类预测。

模型参数

网络内部神经网络层具有权重参数和偏置参数(如nn.Dense),这些参数会在训练过程中不断进行优化,可通过 model.parameters_and_names() 来获取参数名及对应的参数详情。

print(f"Model structure: {model}\n\n")for name, param in model.parameters_and_names():print(f"Layer: {name}\nSize: {param.shape}\nValues : {param[:2]} \n")

更多内置神经网络层详见mindspore.nn API。

查看模型的结构和参数详情。

面向对象编程: 利用MindSpore的nn.Cell基类,使用面向对象的编程风格来构建和管理网络结构。

模块化: 将不同的神经网络层封装成模块,灵活地组合和重用这些模块组合成完整的网络。

调试和可视化: 查看每层的输出和参数对于调试和理解模型有帮助。

函数式自动微分

神经网络的训练主要使用反向传播算法,模型预测值(logits)与正确标签(label)送入损失函数(loss function)获得loss,然后进行反向传播计算,求得梯度(gradients),最终更新至模型参数(parameters)。自动微分能够计算可导函数在某点处的导数值,是反向传播算法的一般化。自动微分主要解决的问题是将一个复杂的数学运算分解为一系列简单的基本运算,该功能对用户屏蔽了大量的求导细节和过程,大大降低了框架的使用门槛。

MindSpore使用函数式自动微分的设计理念,提供更接近于数学语义的自动微分接口gradvalue_and_grad。下面我们使用一个简单的单层线性变换模型进行介绍。        

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
import numpy as np
import mindspore
from mindspore import nn
from mindspore import ops
from mindspore import Tensor, Parameter

函数与计算图

计算图是用图论语言表示数学函数的一种方式,也是深度学习框架表达神经网络模型的统一方法。我们将根据下面的计算图构造计算函数和神经网络。

compute-graph

在这个模型中,𝑥为输入,𝑦为正确值,𝑤和𝑏是我们需要优化的参数。

x = ops.ones(5, mindspore.float32)  # input tensor
y = ops.zeros(3, mindspore.float32)  # expected output
w = Parameter(Tensor(np.random.randn(5, 3), mindspore.float32), name='w') # weight
b = Parameter(Tensor(np.random.randn(3,), mindspore.float32), name='b') # bias

我们根据计算图描述的计算过程,构造计算函数。 其中,binary_cross_entropy_with_logits 是一个损失函数,计算预测值和目标值之间的二值交叉熵损失。

def function(x, y, w, b):z = ops.matmul(x, w) + bloss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))return loss

loss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z)) 后面2个参数ops.ones_like(z), ops.ones_like(z)对应的应该是weight=None和pos_weight=None,每个样本的损失会乘以相应的权重,设置成ops.ones_like(z),和ops.ones_like(z)意味着每个样本的损失将被平等地加权,因为没有为任何样本指定不同的权重。

执行计算函数,可以获得计算的loss值。

loss = function(x, y, w, b)
print(loss)

根据计算图构造计算函数和神经网络。定义损失函数(二值交叉熵)计算预测值与目标值之间的损失。

微分函数与梯度计算¶

为了优化模型参数,需要求参数对loss的导数:$\frac{\partial \operatorname{loss}}{\partial w}$$\frac{\partial \operatorname{loss}}{\partial b}$,此时我们调用mindspore.grad函数,来获得function的微分函数。

这里使用了grad函数的两个入参,分别为:

  • fn:待求导的函数。
  • grad_position:指定求导输入位置的索引。

由于我们对𝑤和𝑏求导,因此配置其在function入参对应的位置(2, 3)

使用grad获得微分函数是一种函数变换,即输入为函数,输出也为函数。

grad_fn = mindspore.grad(function, (2, 3))

执行微分函数,即可获得𝑤、𝑏对应的梯度。

grads = grad_fn(x, y, w, b)
print(grads)

使用MindSpore的grad函数,获得指定参数位置grad_position的梯度。

Stop Gradient¶

通常情况下,求导时会求loss对参数的导数,因此函数的输出只有loss一项。当我们希望函数输出多项时,微分函数会求所有输出项对参数的导数。此时如果想实现对某个输出项的梯度截断,或消除某个Tensor对梯度的影响,需要用到Stop Gradient操作。

这里我们将function改为同时输出loss和z的function_with_logits,获得微分函数并执行。

def function_with_logits(x, y, w, b):z = ops.matmul(x, w) + bloss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))return loss, z
grad_fn = mindspore.grad(function_with_logits, (2, 3))
grads = grad_fn(x, y, w, b)
print(grads)

可以看到求得𝑤、𝑏对应的梯度值发生了变化。此时如果想要屏蔽掉z对梯度的影响,即仍只求参数对loss的导数,可以使用ops.stop_gradient接口,将梯度在此处截断。我们将function实现加入stop_gradient,并执行。

def function_stop_gradient(x, y, w, b):z = ops.matmul(x, w) + bloss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))return loss, ops.stop_gradient(z)
grad_fn = mindspore.grad(function_stop_gradient, (2, 3))
grads = grad_fn(x, y, w, b)
print(grads)

可以看到,求得𝑤、𝑏对应的梯度值与初始function求得的梯度值一致。

阻止某个Tensor对梯度的影响,可以使用ops.stop_gradient接口来实现梯度的截断。

Auxiliary data

Auxiliary data意为辅助数据,是函数除第一个输出项外的其他输出。通常我们会将函数的loss设置为函数的第一个输出,其他的输出即为辅助数据。

gradvalue_and_grad提供has_aux参数,当其设置为True时,可以自动实现前文手动添加stop_gradient的功能,满足返回辅助数据的同时不影响梯度计算的效果。

下面仍使用function_with_logits,配置has_aux=True,并执行。

grad_fn = mindspore.grad(function_with_logits, (2, 3), has_aux=True)
grads, (z,) = grad_fn(x, y, w, b)
print(grads, z)

可以看到,求得𝑤、𝑏对应的梯度值与初始function求得的梯度值一致,同时z能够作为微分函数的输出返回。

在微分函数grad中,除了主要的输出(如loss)之外,还可能有其他的辅助输出。使用has_aux参数可以满足返回辅助数据的同时不影响梯度计算。

神经网络梯度计算

前述章节主要根据计算图对应的函数介绍了MindSpore的函数式自动微分,但我们的神经网络构造是继承自面向对象编程范式的nn.Cell。接下来我们通过Cell构造同样的神经网络,利用函数式自动微分来实现反向传播。

首先我们继承nn.Cell构造单层线性变换神经网络。这里我们直接使用前文的𝑤𝑤、𝑏𝑏作为模型参数,使用mindspore.Parameter进行包装后,作为内部属性,并在construct内实现相同的Tensor操作。

# Define model
class Network(nn.Cell):def __init__(self):super().__init__()self.w = wself.b = bdef construct(self, x):z = ops.matmul(x, self.w) + self.breturn z

接下来我们实例化模型和损失函数。

# Instantiate model
model = Network()
# Instantiate loss function
loss_fn = nn.BCEWithLogitsLoss()

完成后,由于需要使用函数式自动微分,需要将神经网络和损失函数的调用封装为一个前向计算函数。

# Define forward function
def forward_fn(x, y):z = model(x)loss = loss_fn(z, y)return loss

完成后,我们使用value_and_grad接口获得微分函数,用于计算梯度。

由于使用Cell封装神经网络模型,模型参数为Cell的内部属性,此时我们不需要使用grad_position指定对函数输入求导,因此将其配置为None。对模型参数求导时,我们使用weights参数,使用model.trainable_params()方法从Cell中取出可以求导的参数。

grad_fn = mindspore.value_and_grad(forward_fn, None, weights=model.trainable_params())
loss, grads = grad_fn(x, y)
print(grads)

执行微分函数,可以看到梯度值和前文function求得的梯度值一致。

基于nn.Cell的神经网络模型,可以使用value_and_grad接口结合模型的trainable_params()方法来计算梯度。

自动微分:自动微分简化了梯度计算过程,让开发者可以专注于模型设计而非复杂的数学推导。MindSpore通过value_and_gradgrad支持面向对象的模型定义(继承nn.Cell)和函数式自动微分。

计算图:计算图以图形方式表示了函数的运算流程,使得自动微分能够按图进行反向传播。

梯度计算:MindSpore允许对特定的函数输入位置进行梯度计算(通过grad_position参数),并且提供了ops.stop_gradient来控制哪些部分参与梯度计算。通过has_aux=True,可以在计算梯度的同时返回辅助数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/356583.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

29-Linux--守护进程

一.基础概念 1.守护进程:精灵进程,在后台为用户提高服务,是一个生存周期长,通常独立于控制终端并且周期性的执行任务火处理事件发生 2.ps axj:查看守护进程 3.进程组:多个进程的集合,由于管理…

快捷方式(lnk)--加载HTA-CS上线

免责声明:本文仅做技术交流与学习... 目录 CS: HTA文档 文件托管 借助mshta.exe突破 本地生成lnk快捷方式: 非系统图标路径不同问题: 关于lnk的上线问题: CS: HTA文档 配置监听器 有效载荷---->HTA文档--->选择监听器--->选择powershell模式----> 默认生成一…

Python神经影像数据的处理和分析库之nipy使用详解

概要 神经影像学(Neuroimaging)是神经科学中一个重要的分支,主要研究通过影像技术获取和分析大脑结构和功能的信息。nipy(Neuroimaging in Python)是一个强大的 Python 库,专门用于神经影像数据的处理和分析。nipy 提供了一系列工具和方法,帮助研究人员高效地处理神经影…

Desoutter智能拧紧中枢Connect过压维修

马头智能拧紧中枢过压维修是马头拧紧设备维护中的重要环节。当出现马头拧紧设备中枢过压现象时,会导致设备性能下降,甚至损坏设备,因此及时对过压中枢进行维修是保障设备正常运转的关键。 Desoutter电动螺丝刀控制器过压的原因可能有很多&am…

emqx5.6.1 数据、配置备份与迁移

EMQX 支持导入和导出的数据包括: EMQX 配置重写的内容: 认证与授权配置规则、连接器与 Sink/Source监听器、网关配置其他 EMQX 配置内置数据库 (Mnesia) 的数据 Dashboard 用户和 REST API 密钥客户端认证凭证(内置数据库密码认证、增强认证…

五十六、openlayers官网示例Magnify解析——在地图上实现放大镜效果

官网demo地址: Magnify 这篇讲了如何在地图上添加放大镜效果。 首先加载底图 const layer new TileLayer({source: new StadiaMaps({layer: "stamen_terrain_background",}),});const container document.getElementById("map");const map …

ES6+Vue

ES6Vue ES6语法 ​ VUE基于是ES6的,所以在使用Vue之前我们需要先了解一下ES6的语法。 1.什么是ECMAScript6 ECMAScript是浏览器脚本语言的规范,基于javascript来制定的。为什么会出现这个规范呢? 1.1.JS发展史 1995年,网景工…

Linux中部署MySQL环境(本地安装)

进入官网:http://www.mysql.com 选择社区版本得到MySQL 选择对应的版本和系统进行安装 用wget进行软件包下载 wget https://cdn.mysql.com//Downloads/MySQL-8.0/mysql-8.0.32-1.el9.x86_64.rpm-bundle.tar解压该软件包 tar -xf mysql-8.0.32-1.el9.x86_64.rpm-bu…

Rcmp: Reconstructing RDMA-Based Memory Disaggregation via CXL——论文阅读

TACO 2024 Paper CXL论文阅读笔记整理 背景 RDMA:RDMA是一系列协议,允许一台机器通过网络直接访问远程机器中的数据。RDMA协议通常固定在RDMA NIC(RNIC)上,具有高带宽(>10 GB/s)和微秒级延…

实验13 简单拓扑BGP配置

实验13 简单拓扑BGP配置 一、 原理描述二、 实验目的三、 实验内容四、 实验配置五、 实验步骤 一、 原理描述 BGP(Border Gateway Protocol,边界网关协议)是一种用于自治系统间的动态路由协议,用于在自治系统(AS&…

聚类算法(1)---最大最小距离、C-均值算法

本篇文章是博主在人工智能等领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对人工智能等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅解。文章分类在AI学习笔记&#…

SpringMVC系列九: 数据格式化与验证及国际化

SpringMVC 数据格式化基本介绍基本数据类型和字符串自动转换应用实例-页面演示方式Postman完成测试 特殊数据类型和字符串自动转换应用实例-页面演示方式Postman完成测试 验证及国际化概述应用实例代码实现注意事项和使用细节 注解的结合使用先看一个问题解决问题 数据类型转换…

适耳贴合的气传导耳机,带来智能生活体验,塞那Z50耳夹耳机上手

现在大家几乎每天都会用到各种AI产品,蓝牙耳机也是我们必不可少的装备,最近我发现一款很好用的分体式气传导蓝牙耳机,它还带有一个具备AI功能的APP端,大大方便了我们日常的使用。这款sanag塞那Z50耳夹耳机我用过一段时间以后&…

什么概率密度函数?

首先我们来理解一下什么是连续的随机变量,在此之前,我们要先理解什么是随机变量。所谓随机变量就是在一次随机实验中一组可能的值。比如说抛硬币,我们设正面100,反面200,设随机变量为X,那么X{100,200}。 X是…

Introduction to linear optimization 第 2 章课后题答案 11-15

线性规划导论 Introduction to linear optimization (Dimitris Bertsimas and John N. Tsitsiklis, Athena Scientific, 1997), 这本书的课后题答案我整理成了一个 Jupyter book,发布在网址: https://robinchen121.github.io/manual-introdu…

python循环结构

1.while 循环 语句&#xff1a; while 循环条件表达式&#xff1a; 代码块 else&#xff1a; 代码块 小练&#xff1a; 设计一百以内的偶数相加 n 0 while n < 100:n 1if n % 2 0 :print(n) 判断是不是闰年&#xff08;四年一润和百年不润&#xff0c;或者四百年一润&am…

高效22KW双向DCDC储能、充电电源模块项目设计开发

22kW 双向CLL谐振变换器的目标是输出电压范围宽、高效率和高功率密度的双向应用&#xff0c;如电动汽车车载充电器和储能系统。研究了一种新的灵活的 CLLC 双向谐振变换器增益控制方案&#xff0c;以便在充放电模式下实现高效率和宽电压增益范围。得益于 Wolfspeed C3MTM 1200V…

简单好用的C++日志库spdlog使用示例

文章目录 前言一、spdlog的日志风格fmt风格printf风格 二、日志格式pattern三、sink&#xff0c;多端写入四、异步写入五、注意事项六、自己封装了的代码usespdlog.h封装代码解释使用示例 前言 C日志库有很多&#xff0c;glog&#xff0c;log4cpp&#xff0c;easylogging, eas…

Unity核心

回顾 Unity核心学习的主要内容 项目展示 基础知识 认识模型制作流程 2D相关 图片导入设置相关 图片导入概述 参数设置——纹理类型 参数设置——纹理形状 参数设置——高级设置 参数设置——平铺拉伸 参数设置——平台设置&#xff08;非常重要&#xff09; Sprite Sprite Edit…

解两道四年级奥数题(等差数列)玩玩

1、1&#xff5e;200这200个连续自然数的全部数字之和是________。 2、2&#xff0c;4&#xff0c;6&#xff0c;……&#xff0c;2008这些偶数的所有各位数字之和是________。 这两道题算易错吧&#xff0c;这里求数字之和&#xff0c;比如124这个数的全部数字之和是1247。 …