群体优化算法---石墨烯优化算法介绍以及在期权定价上的应用(Black-Scholes模型来计算欧式期权的理论价格)

介绍

石墨烯算法是一种新兴的优化算法,灵感来自于石墨烯的结构和特性。石墨烯是一种由碳原子构成的二维蜂窝状晶格结构,具有优异的机械、电学和热学性能。石墨烯算法通过模拟石墨烯原子之间的相互作用和迁移,来求解复杂的优化问题

基本概念

石墨烯的结构:
石墨烯由碳原子组成,每个碳原子与其他三个碳原子通过共价键连接,形成一个蜂窝状的二维晶格结构。这种结构使得石墨烯具有非常高的强度和导电性。

石墨烯算法的灵感:
石墨烯算法借鉴了石墨烯的这种晶格结构和原子迁移特性,通过模拟碳原子在二维平面上的移动和相互作用,来寻找优化问题的最优解

算法步骤

初始化:
初始化一组解,称为“碳原子”,并将它们随机分布在二维平面上。这些解代表了问题的初始解集。

评估适应度:
计算每个碳原子的适应度值,根据适应度函数评估每个解的优劣。

更新位置:
根据某种规则更新碳原子的位置,模拟碳原子在二维平面上的迁移。这种迁移可以通过模拟退火、粒子群算法或其他元启发式方法来实现。

局部搜索:
在每次迭代中,对每个碳原子进行局部搜索,进一步优化其位置。局部搜索可以通过梯度下降或其他局部优化方法来实现。

选择与替换:
根据适应度值选择较优的碳原子,并用它们替换较差的碳原子,形成新的解集。

迭代:
重复上述步骤,直到达到预定的迭代次数或满足收敛条件。

石墨烯算法的优点

全局搜索能力强:
石墨烯算法能够在广阔的搜索空间中找到全局最优解,避免陷入局部最优。

收敛速度快:
通过模拟碳原子的快速迁移和局部优化,石墨烯算法具有较快的收敛速度。

适应性强:
石墨烯算法可以处理各种类型的优化问题,包括连续、离散和混合优化问题

石墨烯算法的应用

石墨烯算法可以应用于许多实际问题,如:

工程优化:
用于结构优化、路径规划、资源分配等工程领域的问题。

机器学习:
用于神经网络训练、特征选择、超参数优化等机器学习任务。

数据挖掘:
用于聚类分析、关联规则挖掘、分类等数据挖掘任务。

金融优化:
用于投资组合优化、风险管理、期权定价等金融领域的问题

本文代码

定义期权定价模型:我们可以使用Black-Scholes模型来计算欧式期权的理论价格。
设计石墨烯优化算法:模拟石墨烯原子之间的相互作用和迁移,以找到最优的期权定价参数。
整合并实现:将期权定价模型和石墨烯算法整合在一起。

期权定价模型(Black-Scholes)

Black-Scholes模型用于计算欧式看涨期权(Call Option)和看跌期权(Put Option)的价格:
在这里插入图片描述

核心代码

Graphene_Option_Pricing.m

function [best_params, best_fitness] = Graphene_Option_Pricing(S0, K, r, T, market_price, is_call)% 参数初始化dim = 1;  % 需要优化的参数维度:波动率σlower_bound = [0.01];  % 下界:波动率upper_bound = [1.0];  % 上界:波动率max_iter = 500;  % 最大迭代次数pop_size = 30;  % 种群大小% 适应度函数:计算Black-Scholes理论价格与市场价格的均方误差fitness_func = @(params) calculate_fitness(params, S0, K, r, T, market_price, is_call);% 石墨烯优化算法[best_params, best_fitness] = Graphene_Optimization(dim, lower_bound, upper_bound, max_iter, pop_size, fitness_func);disp('Best parameters found:');disp(best_params);disp('Fitness of best parameters:');disp(best_fitness);% 验证找到的最佳波动率参数optimal_sigma = best_params(1);% 使用最佳波动率参数计算期权价格if is_callmodel_price = Black_Scholes_Call(S0, K, r, optimal_sigma, T);elsemodel_price = Black_Scholes_Put(S0, K, r, optimal_sigma, T);end% 打印模型价格和市场价格进行比较disp('Optimal sigma:');disp(optimal_sigma);disp('Model option price with optimal sigma:');disp(model_price);disp('Market option price:');disp(market_price);
endfunction fitness = calculate_fitness(params, S0, K, r, T, market_price, is_call)sigma = params(1);if is_callmodel_price = Black_Scholes_Call(S0, K, r, sigma, T);elsemodel_price = Black_Scholes_Put(S0, K, r, sigma, T);end
endfunction C = Black_Scholes_Call(S0, K, r, sigma, T)d1 = (log(S0 / K) + (r + 0.5 * sigma^2) * T) / (sigma * sqrt(T));d2 = d1 - sigma * sqrt(T);C = S0 * normcdf(d1) - K * exp(-r * T) * normcdf(d2);
endfunction P = Black_Scholes_Put(S0, K, r, sigma, T)d1 = (log(S0 / K) + (r + 0.5 * sigma^2) * T) / (sigma * sqrt(T));d2 = d1 - sigma * sqrt(T);P = K * exp(-r * T) * normcdf(-d2) - S0 * normcdf(-d1);
endfunction [best_solution, best_fitness] = Graphene_Optimization(dim, lower_bound, upper_bound, max_iter, pop_size, fitness_func)% 初始化positions = lower_bound + (upper_bound - lower_bound) .* rand(pop_size, dim);% 主循环for iter = 1:max_iter% 更新位置for i = 1:pop_size% 模拟碳原子的迁移new_position = positions(i, :) + rand(1, dim) .* (best_solution - positions(i, :));new_position = max(min(new_position, upper_bound), lower_bound);new_fitness = fitness_func(new_position);% 局部搜索if new_fitness < fitness(i)positions(i, :) = new_position;fitness(i) = new_fitness;end% 更新最优解if new_fitness < best_fitnessbest_fitness = new_fitness;best_solution = new_position;endend% 记录迭代过程中的最优值(可选)disp(['Iteration ', num2str(iter), ': Best Fitness = ', num2str(best_fitness)]);end
end

run_graphene_option_pricing.m

function run_graphene_option_pricing% 示例使用
S0 = 100;  % 当前股票价格
K = 100;  % 执行价格
r = 0.05;  % 无风险利率
T = 1;  % 到期时间(年)
market_price = 10;  % 市场期权价格
is_call = true;  % 是否为看涨期权[best_params, best_fitness] = Graphene_Option_Pricing(S0, K, r, T, market_price, is_call);
disp('Best parameters for sigma:');
disp(best_params);
disp('Best fitness:');
disp(best_fitness);end

说明

初始化:初始化石墨烯算法的种群,包括参数的上下界、最大迭代次数和种群大小。
适应度函数:计算理论价格和市场价格之间的均方误差。
Black-Scholes模型:计算欧式看涨期权和看跌期权的价格。
石墨烯优化算法:通过模拟石墨烯原子的迁移和相互作用,找到最佳的期权定价参数。
结果输出:输出最佳参数和相应的适应度值。

效果

在这里插入图片描述

完整代码获取

微信扫一扫,回复"石墨烯优化算法"即可查看完整代码
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/361808.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaEE之HTTP协议(1)_HTTP基础知识,HTTP 请求、响应格式,方法,状态码

一、HTTP协议 1.1 基本概念: HTTP全称超文本传输协议&#xff0c;是一种无状态的、应用层的协议&#xff0c;它基于请求/响应模型。客户端&#xff08;通常是Web浏览器&#xff09;通过发送HTTP请求到服务器来获取或发送信息&#xff0c;服务器则返回HTTP响应作为回应。HTTP协…

七天速通javaSE:第四天 递归算法

文章目录 前言一、递归的介绍二、递归模型&#xff08;n!&#xff09;1 阶乘的定义&#xff1a;2. 阶乘的递归代码实现3. 递推与回归的内部逻辑三、练习 前言 本文将学习递归算法。在计算机科学中&#xff0c;递归算法是一种将问题不断分解 为同一类子问题来解决问题的方法。递…

sd卡一插上就提示格式化是怎么回事?sd卡数据如何恢复?

sd卡一插上就提示格式化是怎么回事&#xff1f;里面的数据怎么办&#xff1f;下面小编总结了SD卡提示格式化的原因和对应解决办法分享给大家&#xff01; SD卡好好的&#xff0c;为什么一插电脑上就提示需要格式化呢&#xff1f;当SD卡提示格式化时&#xff0c;可以考虑下面几类…

项目1111

中文显示姓名列和手机号 SELECT contact_name AS 姓名, contact_phone AS 手机号 FROM 2_公司id; 使用explain测试给出的查询语句&#xff0c;显示走了索引查询 EXPLAIN SELECT * FROM 7_订单数量 WHERE countid LIKE e%; 统计用户订单信息&#xff0c;查询所有用户的下单数量…

项目实战系列三: 家居购项目 第六部分

文章目录 &#x1f308;Ajax检验注册名&#x1f308;Ajax添加购物车&#x1f308;上传与更新家居图片&#x1f308;作业布置&#x1f34d;会员登陆后不能访问后台管理&#x1f34d;解决图片冗余问题&#x1f34d;分页导航完善 &#x1f308;Ajax检验注册名 需求分析 注册会员时…

【osgEarth】Ubuntu 22.04 源码编译osgEarth 3.5

下载源代码 git clone --depth1 https://dgithub.xyz/gwaldron/osgearth -b osgearth-3.5 下载子模块 git submodule update --init 如果下载不过来&#xff0c;就手动修改下.git/config文件&#xff0c;将子模块的地址替换成加速地址 (base) yeqiangyeqiang-Default-string…

苹果Mac安装adobe软件报错“installer file may be damaged”解决方案

最近Mac电脑系统的有小伙伴在安装PS、AI、AE、PR等软件&#xff0c;出现了一个错误&#xff0c;让人头疼不已&#xff0c;苦苦找寻&#xff0c;也找不到完美的解决方法。让我们来一起看看吧&#xff01; 很多小伙伴都喜欢苹果电脑&#xff0c;但是在安装外来软件时&#xff0c;…

浏览器扩展V3开发系列之 chrome.cookies 的用法和案例

【作者主页】&#xff1a;小鱼神1024 【擅长领域】&#xff1a;JS逆向、小程序逆向、AST还原、验证码突防、Python开发、浏览器插件开发、React前端开发、NestJS后端开发等等 chrome.cookies API能够让我们在扩展程序中去操作浏览器的cookies。 在使用 chrome.cookies 要先声明…

电脑突然提示dll文件丢失,怎么选择正确的恢复方法?

电脑突然提示dll文件丢失&#xff1f;其实当你的电脑使用久了&#xff0c;出现这种dll文件丢失是非常的正常的&#xff0c;毕竟你总会有不恰当的操作吧&#xff1f;这些操作都是会导致dll文件丢失的。丢失了&#xff0c;我们直接进行相关的修复就好了&#xff0c;还是比较简单的…

【C++】运算符重载(日期类的实现)

文章目录 前言一、运算符重载的概念和意义二、运算符重载的规则三、常用运算符重载1.关系运算符重载2.赋值运算符重载3.、-、、-重载4.前置和后置重载5.流插入<<和流提取>>重载 前言 之前在总结类的六个默认成员函数时&#xff0c;没有过多介绍运算符重载&#xf…

文生视频模型Sora刷屏的背后的数据支持

前言&#xff1a;近日&#xff0c;OpenAI的首个文生视频模型Sora横空出世&#xff0c;引发了一波Sora热潮。与其相关的概念股连续多日涨停&#xff0c;多家媒体持续跟踪报道&#xff0c;央视也针对Sora进行了报道&#xff0c;称这是第一个真正意义上的视频生成大模型。 01 …

第三十三篇——互联网广告:为什么Google搜索的广告效果好?

目录 一、背景介绍二、思路&方案三、过程1.思维导图2.文章中经典的句子理解3.学习之后对于投资市场的理解4.通过这篇文章结合我知道的东西我能想到什么&#xff1f; 四、总结五、升华 一、背景介绍 对于信息的利用&#xff0c;再广告这个维度中去洞察&#xff0c;你又能发…

苹果CMS-V10 搭建教程踩坑,跳过部分验证

我突发奇想,想要安装一个CMS 苹果CMS搭建教程-CSDN博客 然后就有了下面的问题 结论是zip相关依赖未安装, 通过 apt install php-zip, 重新打开安装页面,同样如此 最后依据某个网站提示,修改 "\\192.168.1.200\root\var\www\html\maccms\application\install\control…

鸿蒙系统最简单安装谷歌服务及软件的方法

哈喽&#xff0c;各位小伙伴们好&#xff0c;我是给大家带来各类黑科技与前沿资讯的小武。 近日&#xff0c;华为开发者大会在东莞松山湖召开&#xff0c;发布了盘古大模型5.0和纯血版的鸿蒙 HarmonyOS NEXT 全场景智能操作系统&#xff0c;而根据研究机构 Counterpoint Resea…

AWS云计算平台:全方位服务与实践案例

摘要 在数字化浪潮的推动下&#xff0c;云计算已成为企业转型的强大引擎。AWS作为云计算的先锋&#xff0c;不仅提供了一系列强大的基础设施服务&#xff0c;更是在人工智能领域不断探索和创新。本文将带您领略AWS的全方位服务&#xff0c;并透过实际案例&#xff0c;感受其在…

Redis 7.x 系列【7】数据类型之列表(List)

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Redis 版本 7.2.5 源码地址&#xff1a;https://gitee.com/pearl-organization/study-redis-demo 文章目录 1. 概述2. 常用命令2.1 RPUSH2.2 LPUSH2.3 LRANGE2.4 LINDEX2.6 LREM2.7 LLEN2.8 LPOP…

matlab量子纠缠态以及量子门操作下的量子态

前言 今天我们来聊聊题外话&#xff0c;量子纠缠&#xff0c;在目前物理分支中&#xff0c;要说最深&#xff0c;最能改变人类对宇宙影响的莫过于量子力学了&#xff0c;假如我们可以人为的对两个粒子施加纠缠态&#xff0c;那么我们将可以足不出户的完成对外界的操控 简介 …

三丰云免费虚拟主机及免费云服务器评测

三丰云是一家知名的云计算服务提供商&#xff0c;其免费虚拟主机和免费云服务器备受用户好评。为了更好地了解三丰云的服务质量&#xff0c;我们进行了详细的评测。首先&#xff0c;三丰云的免费虚拟主机提供稳定可靠的性能&#xff0c;让用户可以轻松搭建自己的网站。其免费云…

【博客719】时序数据库基石:LSM Tree的增删查改

时序数据库基石&#xff1a;LSM Tree的增删查改 LSM结构 LSM树将任何的对数据操作都转化为对内存中的Memtable的一次插入。Memtable可以使用任意内存数据结构&#xff0c;如HashTable&#xff0c;BTree&#xff0c;SkipList等。对于有事务控制需要的存储系统&#xff0c;需要在…

ChatGPT在程序开发中的应用:提升生产力的秘密武器

在当今飞速发展的科技时代&#xff0c;程序开发已经成为许多企业和个人必不可少的技能。然而&#xff0c;编写代码并非总是顺风顺水&#xff0c;面对复杂的算法、繁琐的调试、持续不断的需求变更&#xff0c;程序员们常常感到压力山大。在这种情况下&#xff0c;ChatGPT应运而生…