10分钟微调专属于自己的大模型_10分钟微调大模型

1.环境安装

# 设置pip全局镜像 (加速下载)
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
# 安装ms-swift
pip install 'ms-swift[llm]' -U# 环境对齐 (通常不需要运行. 如果你运行错误, 可以跑下面的代码, 仓库使用最新环境测试)
pip install -r requirements/framework.txt  -U
pip install -r requirements/llm.txt  -U

2.微调前推理

使用python:

import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'from swift.llm import ModelType, InferArguments, infer_main
infer_args = InferArguments(model_type=ModelType.qwen1half_4b_chat)
infer_main(infer_args)"""
<<< 你是谁?
我是来自阿里云的大规模语言模型,我叫通义千问。
--------------------------------------------------
<<< what's your name?
I am Qwen, a large language model from Alibaba Cloud.
--------------------------------------------------
<<< 你是谁研发的?
我是阿里云自主研发的超大规模语言模型。
--------------------------------------------------
<<< 浙江的省会在哪?
浙江的省会是杭州。
--------------------------------------------------
<<< 这有什么好吃的?
浙江的美食非常丰富,比如杭州的西湖醋鱼、东坡肉、龙井虾仁、宋嫂鱼羹等都是著名的浙江美食。此外,浙江还有许多小吃,比如油条、烧麦、汤圆、粽子等。
--------------------------------------------------
<<< 晚上睡不着觉怎么办
晚上睡不着觉可以尝试以下几种方法:1. 放松身心:可以尝试做一些放松身心的活动,比如听音乐、做瑜伽、冥想等。2. 保持规律作息:尽量保持每天的作息规律,避免熬夜。3. 避免刺激性食物:避免吃辛辣、油腻、咖啡因等刺激性食物,这些食物可能会刺激神经系统,导致失眠。4. 适当运动:适当的运动可以帮助身体放松,有助于睡眠。5. 睡前喝牛奶:牛奶中含有色氨酸,可以帮助身体产生褪黑激素,有助于睡眠。
"""

使用CLI:

CUDA_VISIBLE_DEVICES=0 swift infer --model_type qwen1half-4b-chat

3.微调

提示: 因为自我认知训练涉及到知识编辑, 建议对MLP加lora_target_modules. 你可以通过指定--lora_target_modules ALL在所有的linear层(包括qkvo以及mlp)加lora. 这通常是效果最好的.

使用python:

# Experimental environment: A10, 3090, V100, ...
# 22GB GPU memory
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'from swift.llm import DatasetName, ModelType, SftArguments, sft_mainsft_args = SftArguments(model_type=ModelType.qwen1half_4b_chat,dataset=[f'{DatasetName.alpaca_zh}#500', f'{DatasetName.alpaca_en}#500',f'{DatasetName.self_cognition}#500'],logging_steps=5,max_length=2048,learning_rate=5e-5,warmup_ratio=0.4,output_dir='output',lora_target_modules=['ALL'],model_name=['小黄', 'Xiao Huang'],model_author=['魔搭', 'ModelScope'])
output = sft_main(sft_args)
best_model_checkpoint = output['best_model_checkpoint']
print(f'best_model_checkpoint: {best_model_checkpoint}')"""Out[0]
{'loss': 1.36837471, 'acc': 0.6827153, 'grad_norm': 2.69893861, 'learning_rate': 2.7e-06, 'epoch': 0.01, 'global_step': 1}
{'loss': 1.64843678, 'acc': 0.62217778, 'grad_norm': 1.68335974, 'learning_rate': 1.351e-05, 'epoch': 0.05, 'global_step': 5}
{'loss': 1.81131458, 'acc': 0.59357905, 'grad_norm': 1.78167629, 'learning_rate': 2.703e-05, 'epoch': 0.11, 'global_step': 10}
{'loss': 1.70607147, 'acc': 0.60849266, 'grad_norm': 1.47256434, 'learning_rate': 4.054e-05, 'epoch': 0.16, 'global_step': 15}
{'loss': 1.51096973, 'acc': 0.63005199, 'grad_norm': 0.91772562, 'learning_rate': 5.405e-05, 'epoch': 0.22, 'global_step': 20}
{'loss': 1.5484211, 'acc': 0.62795267, 'grad_norm': 1.11152458, 'learning_rate': 6.757e-05, 'epoch': 0.27, 'global_step': 25}
{'loss': 1.43836861, 'acc': 0.64279995, 'grad_norm': 1.1565901, 'learning_rate': 8.108e-05, 'epoch': 0.33, 'global_step': 30}
{'loss': 1.38720503, 'acc': 0.64892483, 'grad_norm': 0.98939317, 'learning_rate': 9.459e-05, 'epoch': 0.38, 'global_step': 35}
{'loss': 1.28600607, 'acc': 0.67057638, 'grad_norm': 2.26390719, 'learning_rate': 9.455e-05, 'epoch': 0.43, 'global_step': 40}
{'loss': 1.2084446, 'acc': 0.68125477, 'grad_norm': 1.39036703, 'learning_rate': 8.545e-05, 'epoch': 0.49, 'global_step': 45}
{'loss': 1.39412193, 'acc': 0.64913111, 'grad_norm': 0.6860683, 'learning_rate': 7.636e-05, 'epoch': 0.54, 'global_step': 50}
Train:  54%|███████████████████████████████████████████████▊                                        | 50/92 [02:57<02:28,  3.53s/it]
{'eval_loss': 1.54409802, 'eval_acc': 0.5955491, 'eval_runtime': 0.5527, 'eval_samples_per_second': 18.092, 'eval_steps_per_second': 9.046, 'epoch': 0.54, 'global_step': 50}
Val: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 13.27it/s]
[INFO:swift] Saving model checkpoint to /xxx/output/qwen1half-4b-chat/v0-20240225-194502/checkpoint-50
{'loss': 1.1771349, 'acc': 0.67886224, 'grad_norm': 1.06721985, 'learning_rate': 6.727e-05, 'epoch': 0.6, 'global_step': 55}
{'loss': 1.25694866, 'acc': 0.67727785, 'grad_norm': 1.27860904, 'learning_rate': 5.818e-05, 'epoch': 0.65, 'global_step': 60}
{'loss': 1.18360176, 'acc': 0.70474091, 'grad_norm': 0.71210742, 'learning_rate': 4.909e-05, 'epoch': 0.71, 'global_step': 65}
{'loss': 1.08381062, 'acc': 0.71071234, 'grad_norm': 1.32174027, 'learning_rate': 4e-05, 'epoch': 0.76, 'global_step': 70}
{'loss': 1.23212566, 'acc': 0.68333907, 'grad_norm': 0.87663323, 'learning_rate': 3.091e-05, 'epoch': 0.82, 'global_step': 75}
{'loss': 1.2107378, 'acc': 0.70353975, 'grad_norm': 0.78985584, 'learning_rate': 2.182e-05, 'epoch': 0.87, 'global_step': 80}
{'loss': 1.32458553, 'acc': 0.6687315, 'grad_norm': 1.25317574, 'learning_rate': 1.273e-05, 'epoch': 0.92, 'global_step': 85}
{'loss': 1.28211155, 'acc': 0.67041779, 'grad_norm': 1.10373855, 'learning_rate': 3.64e-06, 'epoch': 0.98, 'global_step': 90}
Train: 100%|████████████████████████████████████████████████████████████████████████████████████████| 92/92 [05:31<00:00,  3.60s/it]
{'eval_loss': 1.53501475, 'eval_acc': 0.59796807, 'eval_runtime': 0.521, 'eval_samples_per_second': 19.193, 'eval_steps_per_second': 9.597, 'epoch': 1.0, 'global_step': 92}
Val: 100%|████████████████████████████████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 13.74it/s]
[INFO:swift] Saving model checkpoint to /xxx/output/qwen1half-4b-chat/v0-20240225-194502/checkpoint-92
"""

使用CLI (单卡):

# Experimental environment: A10, 3090, V100, ...
# 22GB GPU memory
CUDA_VISIBLE_DEVICES=0 \
swift sft \--model_type qwen1half-4b-chat \--dataset alpaca-zh#500 alpaca-en#500 self-cognition#500 \--logging_steps 5 \--max_length 2048 \--learning_rate 5e-5 \--warmup_ratio 0.4 \--output_dir output \--lora_target_modules ALL \--model_name 小黄 'Xiao Huang' \--model_author 魔搭 ModelScope \

使用CLI (DeepSpeed-ZeRO2):

如果你使用的是3090等卡, 可以降低max_length来减少显存消耗.

# Experimental environment: 4 * 3090
# 4 * 24GB GPU memory
CUDA_VISIBLE_DEVICES=0,1,2,3 \
NPROC_PER_NODE=4 \
swift sft \--model_type qwen1half-4b-chat \--dataset alpaca-zh#500 alpaca-en#500 self-cognition#500 \--logging_steps 5 \--max_length 2048 \--learning_rate 5e-5 \--warmup_ratio 0.4 \--output_dir output \--lora_target_modules ALL \--model_name 小黄 'Xiao Huang' \--model_author 魔搭 ModelScope \--deepspeed default-zero2

4.微调后推理

你需要设置best_model_checkpoint的值, 该值会在sft的最后被打印出来.

使用python:

import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'from swift.llm import InferArguments, merge_lora, infer_mainbest_model_checkpoint = 'qwen1half-4b-chat/vx-xxx/checkpoint-xxx'
infer_args = InferArguments(ckpt_dir=best_model_checkpoint)
merge_lora(infer_args, device_map='cpu')
result = infer_main(infer_args)"""Out[0]
<<< 你是谁?
我是魔搭的人工智能助手,我的名字叫小黄。我可以回答你的问题、提供信息、进行对话等等。如果你有任何问题或需要帮助,请随时告诉我。
--------------------------------------------------
<<< what's your name?
I am Xiao Huang, an artificial intelligence assistant developed by ModelScope.
--------------------------------------------------
<<< 你是谁研发的?
我是由魔搭研发的。
--------------------------------------------------
<<< 浙江的省会在哪?
浙江省的省会是杭州。
--------------------------------------------------
<<< 这有什么好吃的?
浙江的美食非常丰富,比如杭州的西湖醋鱼、东坡肉、龙井虾仁等等都是非常有名的菜肴。此外,浙江还有许多小吃,比如油条、烧饼、汤圆等等。
--------------------------------------------------
<<< 晚上睡不着觉怎么办
晚上睡不着觉可以尝试以下几种方法:
1. 放松身心:可以尝试做一些放松身心的活动,比如听音乐、冥想、深呼吸等等。
2. 保持规律的作息:尽量保持规律的作息,避免熬夜。
3. 避免刺激性物质:避免摄入咖啡因、酒精等刺激性物质,这些物质可能会干扰你的睡眠。
4. 适当运动:适当的运动可以帮助你放松身心,提高睡眠质量。
5. 睡前放松:可以尝试一些睡前放松的活动,比如阅读、听轻音乐、泡热水澡等等。
希望以上建议能够帮助你改善睡眠质量。
"""

使用CLI:

# 直接推理
CUDA_VISIBLE_DEVICES=0 swift infer --ckpt_dir 'qwen1half-4b-chat/vx-xxx/checkpoint-xxx'# Merge LoRA增量权重并推理
# 如果你需要量化, 可以指定`--quant_bits 4`.
CUDA_VISIBLE_DEVICES=0 swift export \--ckpt_dir 'qwen1half-4b-chat/vx-xxx/checkpoint-xxx' --merge_lora true
CUDA_VISIBLE_DEVICES=0 swift infer --ckpt_dir 'qwen1half-4b-chat/vx-xxx/checkpoint-xxx-merged'

5.Web-UI

使用python:

import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'from swift.llm import AppUIArguments, merge_lora, app_ui_mainbest_model_checkpoint = 'qwen1half-4b-chat/vx-xxx/checkpoint-xxx'
app_ui_args = AppUIArguments(ckpt_dir=best_model_checkpoint)
merge_lora(app_ui_args, device_map='cpu')
result = app_ui_main(app_ui_args)

使用CLI:

# 直接使用app-ui
CUDA_VISIBLE_DEVICES=0 swift app-ui --ckpt_dir 'qwen1half-4b-chat/vx-xxx/checkpoint-xxx'# Merge LoRA增量权重并使用app-ui
# 如果你需要量化, 可以指定`--quant_bits 4`.
CUDA_VISIBLE_DEVICES=0 swift export \--ckpt_dir 'qwen1half-4b-chat/vx-xxx/checkpoint-xxx' --merge_lora true
CUDA_VISIBLE_DEVICES=0 swift app-ui --ckpt_dir 'qwen1half-4b-chat/vx-xxx/checkpoint-xxx-merged'

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

👉AGI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉AGI大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉AGI大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/362022.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《web应用技术》第十二次课后作业

1.servlet基础知识 1.定义 Java Servlet 是运行在 Web 服务器或应用服务器上的程序&#xff0c;它是作为来自 Web 浏览器或其他 HTTP 客户端的请求和 HTTP 服务器上的数据库或应用程序之间的中间层。 2.生命周期 init 方法被设计成只调用一次。它在第一次创建 Servlet 时被…

如何高效使用 .http 文件记录和测试API接口

1. 前言 在现代软件开发中&#xff0c;API&#xff08;应用程序接口&#xff09;成为了系统间通信的重要桥梁。.http 文件作为一种轻量级的API请求描述方式&#xff0c;不仅便于开发者记录和分享API接口信息&#xff0c;还能够帮助自动化测试流程。本文将深入介绍如何有效地使…

暑假追高必备:ChildLife全新钙镁锌小绿钙

2024年暑假将至&#xff0c;家长们对于孩子的健康关注再次提升&#xff0c;其中补钙成为许多家长关注的重点。暑假期间&#xff0c;孩子有更多时间进行户外活动&#xff0c;加上高温流汗多&#xff0c;身体的钙更容易流失&#xff0c;因此需要额外地补充。为此&#xff0c;美国…

数据恢复篇:如何恢复丢失的Android短信?

许多用户发现自己处于重要短信意外从Android手机中删除的情况。幸运的是&#xff0c;有一些行之有效的方法可以在没有root的情况下恢复已删除的短信Android&#xff0c;这可以成为救命稻草。这些技术不需要深厚的技术知识&#xff0c;也不需要损害设备的安全性。为了帮助您摆脱…

iOS项目开发遇到问题杂项坑点记录

ios17 弹窗UIAlertController展示逻辑变化&#xff0c;单个词一行展示不下不换行&#xff08;这前版本会换行&#xff09;&#xff0c;直接截断超出部分。 UINavigationController push立刻pop会异常&#xff0c;使用用setViewCollerllers可以避免这个问题 键盘切换后立刻切页…

通过搭建 24 点小游戏应用实战,带你了解 AppBuilder 的技术原理

本文将通过一个 24 点小游戏的案例&#xff0c;详细介绍百度智能云千帆 AppBuilder 的基本技术原理和使用方法&#xff0c;帮助读者快速掌握 AI 原生应用的开发流程。 1 三步构建 AI 原生应用方法论 AI 原生应用与传统应用的最大区别是交互形态彻底的拟人化&#xff0c;通过文…

Java日志 - JUL

一、JUL学习总结 &#xff08;1&#xff09;总结 JDK自带的日志系统中已经为我们创建了一个顶层的RootLogger&#xff0c;可以针对这个顶层的RootLogger设置多个Handler&#xff08;如ConsoleHandler, FileHandler等&#xff09;&#xff0c;如果想在控制台输出debug级别以上的…

还不到6个月,GPTs黄了

相比起来&#xff0c;人们还不如使用一个足够强大、灵活且通用的AI助手来满足各类复杂需求。更严重的是一些独立GPTs显露出的安全隐患。除此之外&#xff0c;最大的问题在于OpenAI模糊不清的货币化政策。 文章正文 上周&#xff0c;不少人发现微软官网忽然更新了一条“GPT Bu…

AI论文降重:一键操作,让你的论文查重率瞬间下降

高查重率是许多毕业生的困扰。通常&#xff0c;高查重率源于过度引用未经修改的参考资料和格式错误。传统的降重方法&#xff0c;如修改文本和增添原创内容&#xff0c;虽必要但耗时且成效不一。 鉴于此&#xff0c;应用AI工具进行AIGC降重成为了一个高效的解决方案。这些工具…

聊聊 golang 中 channel

1、引言 Do not communicate by sharing memory; instead, share memory by communicating Golang 的并发哲学是“不要通过共享内存进行通信&#xff0c;而要通过通信来共享内存”&#xff0c;提倡通过 channel 进行 goroutine 之间的数据传递和同步&#xff0c;而不是通过共享…

Embedding是什么?为什么重要?

本文为 Simon Willison 在 PyBay 上发表的演讲视频的文字改进版 原文链接&#xff1a; https://simonwillison.net/2023/Oct/23/embeddings/ 演讲视频链接&#xff1a; https://youtu.be/ArnMdc-ICCM Embedding 是一个非常巧妙的技术&#xff0c;但常常和一堆令人生畏的术…

Structured Steaming结构化流详解:大案例解析(第12天)

系列文章目录 一、结构化流介绍&#xff08;了解&#xff09; 二、结构化流的编程模型&#xff08;掌握&#xff09; 三、Spark 和 Kafka 整合&#xff0c;流处理&#xff0c;批处理演示&#xff08;掌握&#xff09; 四、物联网数据分析案例&#xff08;熟悉&#xff09; 文章…

无线领夹麦克风怎么挑选,能让声音变好听的领夹麦推荐大全

近年来&#xff0c;随着直播销售和个人视频日志&#xff08;Vlog&#xff09;的流行&#xff0c;自媒体内容创作已经成为一种文化现象。这一现象不仅改变了人们获取信息的方式&#xff0c;也极大地推动了相关音频设备的发展。无线领夹麦克风&#xff0c;以其轻巧的设计和出色的…

真实评测:可道云teamOS文件上传功能丝滑到爱不释手

对于每日沉浸在图片与视频海洋中的媒体工作者而言&#xff0c;与海量的多媒体文件打交道几乎成了家常便饭。 文件的上传和存储&#xff0c;对他们而言&#xff0c;不仅仅是工作中的一个环节&#xff0c;更像是将一天的辛勤与付出妥善安置的仪式。无论是突发现场的精彩瞬间&am…

做AI搜索的55条建议,务必收藏

目前大模型产品落地真正形成共识的只有AI搜索&#xff0c;自从Perplexity发起了对搜索霸主谷歌的强势挑战&#xff0c;国内外大大小小做搜索的厂商&#xff0c;都推出了内置于原搜索结果的AI总结功能&#xff0c;譬如谷歌的AI Overviews、微软的new bing、百度的AI伙伴、360的A…

ubuntu 18.04 server源码编译安装freeswitch 1.10.7支持音视频通话、收发短信——筑梦之路

软件版本说明 ubuntu版本18.04&#xff1a;https://releases.ubuntu.com/18.04.6/ubuntu-18.04.6-live-server-amd64.iso freeswitch 版本1.10.7&#xff1a;https://files.freeswitch.org/freeswitch-releases/freeswitch-1.10.7.-release.tar.gz spandsp包&#xff1a;https:…

C++初学者指南第一步---14.函数调用机制

C初学者指南第一步—14.函数调用机制 文章目录 C初学者指南第一步---14.函数调用机制1.记住&#xff1a;内存的结构2.函数调用是如何工作的3. 不要引用局部变量4. 常见编译器优化5. Inlining内联 1.记住&#xff1a;内存的结构 堆&#xff08;自由存储&#xff09; 用于动态存…

Qt 学习(一) addressbook

Qt Demo: addressbook (1)创建项目&#xff1a;选择不创建界面&#xff0c;即UI&#xff0c;此时会自动生成的文件如图所示&#xff1a; QApplication&#xff1a; MainWindow 继承自 QMainWindow&#xff0c;根据需要设计的界面样式。 (2)确定MainWindow 的成员变量 首先&…

告别模糊时代,扫描全能王带来清晰世界

模糊碑文引发的思考 上个月中旬去洛阳拜访了著名的龙门石窟&#xff0c;本就对碑文和文字图画感兴趣的我们&#xff0c;准备好好欣赏一下龙门石窟的历史文化古迹。到了地方之后&#xff0c;我发现石窟的高度和宽度远远超出了想象&#xff0c;正因如此&#xff0c;拍出来的文字…

计算机网络之数据通信原理

1.通信系统的基本组成 信源&#xff1a;信息的发出者&#xff1b; 信宿&#xff1a;信息的接收者&#xff1b; 载体&#xff1a;信息的传送通道&#xff1b; 变换器&#xff1a;将信息变换成载体上可传输的信号&#xff1b; 反变换器&#xff1a;将载体上传输的信号变换成信…