基于matlab的K-means聚类图像分割

1 原理

K-means聚类算法在图像分割中的应用是基于一种无监督的学习方法,它将图像中的像素点或特征区域划分为K个不同的簇或类别。以下是K-means聚类算法用于图像分割的原理,包括步骤和公式:

1.1 原理概述
  1. 选择簇的数量(K)
    • 首先,用户需要指定要将图像数据分成多少个簇(即K的值)。
  2. 初始化聚类中心
    • 随机选择K个像素点作为初始聚类中心。
  3. 分配数据点到最近的聚类中心
    • 对于图像中的每个像素点,计算其与每个聚类中心的距离(如欧氏距离),并将其分配给距离最近的聚类中心所在的簇。
  4. 更新聚类中心
    • 对于每个簇,计算该簇中所有像素点的平均值(或质心),并将这个平均值作为新的聚类中心。
  5. 重复迭代
    • 重复步骤3和步骤4,直到聚类中心不再发生显著变化或达到预定的迭代次数。
1.2 公式表示
  • 距离计算(以欧氏距离为例):

        设x_i为图像中的一个像素点(或特征向量),\mu_j为第j个聚类中心,则像素点x_i到聚类中心\mu_j的欧氏距离计算公式为:

d(x_i, \mu_j) = \sqrt{\sum_{d=1}{D} (x_i{(d)} - \mu_j{(d)})2}

其中,D是像素点或特征向量的维度。

  • 聚类中心的更新
    • 对于每个簇C_k,其新的聚类中心\mu_k'计算公式为:

\mu_k' = \frac{1}{|C_k|} \sum_{x_i \in C_k} x_i

  • 其中,|C_k|是簇C_k中像素点的数量。
1.3 步骤总结
  1. 初始化:选择K个初始聚类中心。
  2. 分配:计算每个像素点到聚类中心的距离,并将其分配给最近的聚类中心。
  3. 更新:重新计算每个簇的聚类中心。
  4. 迭代:重复步骤2和步骤3,直到聚类中心不再变化或达到预设的迭代次数。
1.4 注意事项
  • K-means算法对初始聚类中心的选择敏感,因此可能多次运行算法并选择最佳结果。
  • SSE(Sum of Squared Errors)是衡量聚类效果的一个指标,其值越小表示聚类结果越紧密。
  • 图像分割中的K-means算法通常是在图像的特征空间(如颜色空间、纹理空间等)上进行的,而不是直接在像素值上进行。这有助于提高算法的鲁棒性和效率。

2 代码

%% 基于聚类的分割 (使用K-means聚类)
figure('Position', [100 100 1200 400]);
% 读取图像并转换为双精度  
I3 = imread('test.jpg');
I3 = rgb2gray(I3);  
subplot(1,3,1);imshow(I3);
title('origin Image');
% 读取图像并转换为双精度  
I4 = imread('test.jpg'); 
I_double = im2double(I4);  
% 将图像数据重塑为二维数组,其中每一列是一个像素  
data = reshape(I_double, [], 3);  
% 使用K-means聚类  
[cluster_idx, cluster_center] = kmeans(data, 3); % 假设我们想要3个聚类  
% 将聚类结果重塑为图像大小  
segmented_image = reshape(cluster_idx, size(I4, 1), size(I4, 2));  
% 显示结果(可能需要为每个聚类分配一个颜色)  
segmented_image_colored = label2rgb(segmented_image, 'jet', 'k', 'shuffle'); subplot(1,3,2);imshow(segmented_image_colored); 
title('three colors Image using K-means Clustering');
% 读取图像并转换为灰度  
I5 = imread('test.jpg');  
I_gray = rgb2gray(I5);  
I_double = im2double(I_gray);  % 将图像数据重塑为二维数组  
data = I_double(:);  % 使用两个中心的K-means聚类  
[cluster_idx, cluster_center] = kmeans(data, 2);  % 将聚类结果重塑为图像大小  
segmented_image = reshape(cluster_idx, size(I_gray));  % 为每个聚类分配一个颜色(在这种情况下,0为黑色,1为白色)  
segmented_image_bw = ind2rgb(segmented_image, [0 0 0; 1 1 1]);  % 显示结果   
subplot(1,3,3);imshow(segmented_image_bw);  
title('Black and White Image using K-means Clustering');

3 运行结果

图1 图像分割对比图

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/362094.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何科学减肥先从了解自己在到饮食运动

在这个以瘦为美的时代,许多人被肥胖所困扰着, 今天就来教大家如何科学减脂。 一、如何判断自己是否需要减脂? 第一步就是判断自己的体重指数(BMI)是否在正常标准。BMI是国际上衡量人体胖瘦程度及是否健康的一个常用指…

定位问题6.27 petal数据接口问题

petal接口响应结果 响应结果为空的数据,而我们需要的是正确的响应结果。 排查问题 确认接口是否正确 以下是爬虫的配置文件内容,我查看了PETAL_URL的接口,并询问接口开发人员,得知接口地址并未改变 确认接口请求体是否正确 我使…

开源“卖货主播”AI大模型——拳打李佳琦、脚踢小杨哥、人人都能当销冠?

开源“卖货主播”AI大模型——拳打李佳琦、脚踢小杨哥、人人都能当销冠? 刚刚在知名同性交友平台发现了一个或许能让你致富的开源项目——“Streamer-Sales 销冠”。 正如其名字所言,这是一个卖货主播LLM大模型,旨在让你成为销冠。 https:/…

d3dx9_42.dll找不到怎么正确处理?教学级修复d3dx9_42.dll的方法分享

d3dx9_42.dll找不到?别着急,这只是普普通通的dll文件找不到而已,它可能因为各种原因而导致丢失,我们只要直接对d3dx9_42.dll进行修复就可以了。下面我们一起来了解一下d3dx9_42.dll找不到的正确处理方法。 一.d3dx9_42.dll找不到是…

微信公众号写作时必备的AI提示词(也称为指令或Prompt)

猫头虎 🐯 微信公众号写作时必备的AI提示词(也称为指令或Prompt) 🎉 大家好,我是猫头虎,科技自媒体博主。今天,我们来聊聊如何利用AI提示词,打造出爆款的微信公众号文章。&#x1…

OnlyOffice:为现代工作方式而生的办公套件

ONLYOFFICE官网链接:https://www.onlyoffice.com/zh/office-suite.aspx https://www.onlyoffice.com/zh/pdf-editor.aspx OnlyOffice 是一款开源的办公套件,它提供了一系列的办公工具,包括文档编辑器、表格编辑器和演示文稿编辑器。这些工具…

靶机渗透之DC-7

一、信息收集 扫描网段,发现靶机ip为192.168.145.235。 nmap -sP 192.168.145.* 进一步对端口,靶机系统等信息进行一个收集。可以看到开放了22端口,80端口,主机系统为linux等信息。 nmap -sT -T4 -O -sV -sC -p1-65535 192.16…

零知识证明基础:对称加密与非对称加密

1、绪论 在密码学体系中,对称加密、非对称加密、单向散列函数、消息认证码、数字签名和伪随机数生成器被统称为密码学家的工具箱。其中,对称加密和非对称加密主要是用来保证机密性;单向散列函数用来保证消息的完整性;消息认证码的…

工具篇:鸿蒙DevEco Studio5.0版本下载及安装

1、下载中心地址 下载中心 | 华为开发者联盟-HarmonyOS开发者官网,共建鸿蒙生态 2、安装 DevEco Studio支持Windows和macOS系统,下面将针对两种操作系统的软件安装方式分别进行介绍。 Windows环境 运行环境要求 为保证DevEco Studio正常运行&#…

人工智能AI风口已开:如何赋予UI设计与视频剪辑新生命

随着科技的浪潮不断向前推进,人工智能(AI)正以惊人的速度重塑着我们的世界,特别是在创意产业的核心领域——UI设计与视频剪辑中,AI正逐步成为驱动行业创新与变革的关键力量。在这个AI技术全面开花的新时代,…

将产品制作成3D模型在网站上展示需要多少费用?

将产品制作成3D模型并在网站上展示的费用会因多种因素而异,包括模型的复杂度、所需的细节程度、制作3D模型的软件和工具、以及是否需要专业设计师的服务等。此外,不同的3D模型制作服务提供商可能会有不同的定价标准。 如果能自己制作3D模型,…

高性能并行计算华为云实验三:蒙特卡罗算法实验

目录 一、实验目的 二、实验说明 三、实验过程 3.1 创建蒙特卡罗算法源码 3.2 Makefile的创建与编译 3.3 主机文件配置与运行监测​​​​​​​ 四、实验结果与分析 4.1 原教程对应的实验结果 4.2 改进后的实验结果 五、实验思考与总结 5.1 实验思考 5.2 实验总结…

JAVA编程题期末题库【中】

8.计算邮资 程序代码: public static void main(String[] args) {// 计算邮资//if多分支语句//创建对象java.util.Scanner inputnew java.util.Scanner(System.in); //提示输入用户,输入邮件的重量System.out.println("邮件的重量:");int wei…

智能疏散指示系统为什么是验收的必然考核标准?哪些厂家具备资质

智能疏散系统需要什么?现阶段,随着我国经济不断发展趋势的加快,住宅建筑具有复杂的特点。近年来,我国高层住宅、大中型建筑、综合性公共建筑越来越多。随着这座现代建筑的进步,我发现这种类型的建筑在发生火灾或事故时…

Spring系统学习 - FactoryBean和基于XML的自动装配

Factory Bean Spring的FactoryBean是一个特殊的Bean,用于创建其他Bean实例。FactoryBean接口定义了一个工厂Bean,该Bean可以用来生成其他Bean的实例。通过实现FactoryBean接口,开发人员可以自定义Bean的创建逻辑,实现更灵活的Bea…

达梦数据库修改日期时间格式和语言

1、问题 重装了达梦数据库后,通过达梦管理工具查询,表字段timestamp类型变成了中文 对于2023-11-01 01:55:33格式时间插入报错,非法的时间日期类型数据 2、查询配置 通过DM8系统管理员手册查到相关配置 通过命令进行查询显示,语…

pd虚拟机 Parallels Desktop 19 for Mac 破解版小白安装使用指南

Parallels Desktop 19 for Mac 乃是一款适配于 Mac 的虚拟化软件。它能让您在 Mac 计算机上同时运行多个操作系统。您可借此创建虚拟机,并于其中装设不同的操作系统,如 Windows、Linux 或 macOS。使用 Parallels Desktop 19 mac 版时,您可在 …

1500平方米气膜羽毛球馆的造价分析—轻空间

随着全民健身热潮的兴起,气膜羽毛球馆因其良好的空气质量、恒温恒湿的环境和快捷的建设速度,受到了越来越多人的欢迎。建造一个1500平方米的气膜羽毛球馆涉及多个方面的费用,包括场地准备、设备材料、安装施工、配套设施等。轻空间将详细分析…

2024-6-27 石群电路-31

2024-6-27,星期四,12:52,天气:雨,心情:晴。今天没有什么事情发生,继续学习,加油!!!!! 今日观看了石群老师电路课程的视频…

什么类型的网站需要配置OV证书

目录 什么网站更适合OV证书: 申请OV需要注意: 申请单位组织验证型OV SSL证书的详细步骤 OV SSL证书全称Organization Validation SSL(组织验证性SSL证书),是一种需要验证网站真实身份的数字证书。通过证书颁发机构审查网站企业身份和域名所…