PID算法介绍以及代码实现过程说明

写在正文之前

在上一篇文章就说会在这两天会基于PID写一个文章,这里的原理部分值得大家都看一下,代码部分的实现是基于python的,但是对于使用其他编程语言的朋友,由于我写的很通俗易懂,所以也值得借鉴。

一、PID算法介绍

1、开环控制和闭环控制

开环控制和闭环控制的区别在于开环控制没有反馈调节,而闭环控制有反馈调节

PID就是闭环调节

2、PID的标准公式

3、PID的控制示意图

 

4、以无人机场景对PID各部分进行说明

(1)比例控制及稳态误差的存在

Proportion 比例控制
情景:无人机停在两米的高度,我们需要它停在十米的高度
Err = h - h0 =8
比例控制就是每次调节的高度是误差的Kp倍
假设Kp=0.5
Kp * err=4
则第一次调节的量是四米,第二次是两米,随着误差的减小,每次调节上升的量也逐渐减小
最终会接近十米高度,这整个过程就是比例控制
Kp越大,无人机调节越快
但是比例调节也存在弱点,假设无人机到达八米之后,存在一个向下的气流让它下降一米,这时它就会在八米的位置不变
这就是静态误差也叫稳态误差

(2)积分控制与过冲

Integration 积分控制
为了消除稳态误差,我们就要引入积分控制
积分控制是对过去的所有误差求和,在离散的情况,就是做累加
Ki:积分系数
此时的调节函数:Kp * err + Ki *  err的积分
假设积分系数为0.1,则在比例控制中出现的稳态误差得到解决,在八米时尽管有向下的气流无人机还是能上升1.2米
经过三次控制,累计误差已经到达了12.8,此时再进行下一次控制就会超过十米,这种现象叫过冲
此时就该微分控制出场了

(3)微分控制

Differential 微分控制
微分控制就是通过当前时刻与前一时刻误差量的差值对未来作预测
如果差值为正,就认为误差在逐渐扩大,需要加大控制强度使误差降下来
如果差值为负,则误差在减小,控制强度可以小一点让目标平稳缓和的到达指定值
 

二、代码实现过程说明

1、模块的导入

from pyb import millis  
from math import pi, isnan

millis用于获取当前的时间,以毫秒为单位

pi是圆周率常数

isnan函数用于检查一个值是否为NAN(Not a Number)

2、定义PID类

class PID:_kp = _ki = _kd = _integrator = _imax = 0_last_error = _last_derivative = _last_t = 0_RC = 1/(2 * pi * 20)  

这里定义了PID类的属性,包括
比例、积分、微分系数:_kp、_ki、_kd
积分器:_integrator(用于累积误差,用于计算积分项)
积分限制:_imax
最后的误差:_last_error
最后的导数:_last_derivative(这里的导数值指的是误差随时间的变化率,是通过计算当前误差与前一次误差之差再除以时间间隔得到的)
最后的时间戳:_last_t
RC 低通滤波器的时间常数

3、类中的初始化方法

def __init__(self, p=0, i=0, d=0, imax=0):# 初始化 PID 控制器的参数self._kp = float(p)  # 比例系数self._ki = float(i)  # 积分系数self._kd = float(d)  # 微分系数self._imax = abs(imax)  # 积分限制,防止积分饱和self._last_derivative = float('nan')  # 最后的导数值初始化为 NaN

关于这些参数的说明,在注释中已经给出,我这里只介绍它这里涉及的语法知识 

在这里我们可以看到定义变量的时候在变量面前加上了self,请注意,在类中的方法与普通函数区别,类中方法必须有一个额外的第一个参数名称,按照惯例这个名称是“self”

abs函数是取绝对值的函数

4、重置函数

def reset_I(self):self._integrator = 0  # 重置积分器self._last_derivative = float('nan')  # 重置最后的导数值为 NaN

虽然我这里说的是函数,但是更准确的表达应该是方法

这个类方法重置了积分器(误差的积累值)、 导数值(误差的变化率)

5、PID调节值计算函数

这个部分是整个PID类的重点,作PID的调节,主要就是这个函数

(1)函数的定义及参数的传入
def get_pid(self, error, scaler)

对传入的三个参数进行解释,其中self是调用变量需要的,其他的都是在之后计算涉及到的参数

self:self参数是必须传入的,只有传入了self参数才能使用以self开头的变量
error:误差值
scaler:缩放因子

(2)获取时间、时间差并初始化输出值
        tnow = millis()  # 获取当前时间dt = tnow - self._last_t  # 计算时间差output = 0  # 初始化输出值

这里利用了millis函数获取当前时间戳,和上一次获取的时间戳相减得到时间差, 有很多操作都涉及到了时间差

(3)判断是否第一次运行及时间差是否过长
if self._last_t == 0 or dt > 1000:  dt = 0  self.reset_I()  

如果是第一次运行或者运行时间过长,我们就重置时间差、积分器、导数值

积分器:误差的累积                导数值:误差的变化率(怕大家看到这里忘了再强调一下)


这里之所以作这样的处理,是因为积分和微分的处理都和之前的状态有关,所以在时间过长的时候我们直接就重置积分器和导数值(它们中存储的信息不再具有实时性)

(4)更新时间戳
      self._last_t = tnow  # 更新最后时间戳delta_time = float(dt) / float(1000)  # 将时间差转换为秒

这里在更新最后的时间差的同时将时间差转换成秒,方便之后的运算

(5)PID操作

在这里的PID操作要做的事情就是对系数和数据进行运算并将相关值赋给output最后进行输出

PID操作的顺序一般是(如果三个部分都用上):P——>D——>I(比例、微分、积分)

P操作
output += error * self._kp 

比例项的处理是最简单的,只需要给误差乘上一个比例系数之后赋值给output

D操作

D操作和I操作就比P操作复杂很多了

我们要根据微分系数的值和时间差的值来进行判断决定下一步的处理

if abs(self._kd) > 0 and dt > 0:  # 如果微分系数绝对值大于 0 且时间差大于 0if isnan(self._last_derivative):  # 如果最后的导数值为 NaN,就对其作初始化derivative = 0  # 导数值设置为 0self._last_derivative = 0  # 重置最后的导数值else:derivative = (error - self._last_error) / delta_time  # 计算导数值(误差的变化率)# 使用低通滤波器平滑导数值derivative = self._last_derivative + ((delta_time / (self._RC + delta_time)) * (derivative - self._last_derivative))      #delta_time就是转换成秒的时间差self._last_error = error  # 更新最后的误差值self._last_derivative = derivative  # 更新最后的导数值output += self._kd * derivative  # 计算微分项并加到输出中

首先如果微分系数大于0且时间差大于零才进行判断

进入判断之后再对导数值进行判断

如果导数值已经初始化,就计算导数值,如果导数值未进行初始化,就对导数值进行初始化

对导数值的计算首先只是差值减去时间,但是利用低通滤波器平滑导数值

然后就是顺便更新最后的导数值和误差值,然后把通过低通滤波之后的导数值乘以微分项加到output中

I操作

如果给出代码,大家可能会发现有一点很奇怪,那就是在我们进行积分操作之前有一个缩放操作

output *= scaler 

这个缩放值一般是1,当然,根据情况可以赋不同的值来适应不同的控制系统需求和误差幅度

接下来才是I操作,积分操作和微分操作的逻辑很像

if abs(self._ki) > 0 and dt > 0:                                      self._integrator += (error * self._ki) * scaler * delta_time  if self._integrator < -self._imax:self._integrator = -self._imaxelif self._integrator > self._imax:self._integrator = self._imaxoutput += self._integrator

首先对微分系数和时间差进行判断,若积分系数不为0且时间差大于零,进入分支

分支中的处理代码的主要功能是把积分器的值在-imax和imax之间,防止积分饱和

在作完了防止积分饱和的代码之后,我们把积分器也加入到output中,最后将output的值返回,这就是我们的最后调控PID控制函数返回的值

return output
(6)完整代码附上
from pyb import millis  # 导入 pyboard 的 millis 函数,用于获取当前时间(毫秒)
from math import pi, isnan  # 导入 pi 和 isnan 函数class PID:# 定义 PID 控制器的参数和状态变量_kp = _ki = _kd = _integrator = _imax = 0_last_error = _last_derivative = _last_t = 0_RC = 1/(2 * pi * 20)  # RC 低通滤波器的时间常数def __init__(self, p=0, i=0, d=0, imax=0):# 初始化 PID 控制器的参数self._kp = float(p)  # 比例系数self._ki = float(i)  # 积分系数self._kd = float(d)  # 微分系数self._imax = abs(imax)  # 积分限制,防止积分饱和self._last_derivative = float('nan')  # 最后的导数值初始化为 NaNdef get_pid(self, error, scaler):tnow = millis()  # 获取当前时间dt = tnow - self._last_t  # 计算时间差output = 0  # 初始化输出值if self._last_t == 0 or dt > 1000:  # 如果是第一次运行或者时间差大于 1 秒dt = 0  # 重置时间差self.reset_I()  # 重置积分器self._last_t = tnow  # 更新最后时间戳delta_time = float(dt) / float(1000)  # 将时间差转换为秒output += error * self._kp  # 计算比例项if abs(self._kd) > 0 and dt > 0:  # 如果微分系数大于 0 且时间差大于 0if isnan(self._last_derivative):  # 如果最后的导数值为 NaNderivative = 0  # 设置导数为 0self._last_derivative = 0  # 重置最后的导数值else:derivative = (error - self._last_error) / delta_time  # 计算误差的导 数# 使用低通滤波器平滑导数值derivative = self._last_derivative + ((delta_time / (self._RC + delta_time)) * (derivative - self._last_derivative))self._last_error = error  # 更新最后的误差值self._last_derivative = derivative  # 更新最后的导数值output += self._kd * derivative  # 计算微分项并加到输出中output *= scaler  # 按比例缩放输出值if abs(self._ki) > 0 and dt > 0:  # 如果积分系数大于 0 且时间差大于 0                                     self._integrator += (error * self._ki) * scaler * delta_time  # 计算积分项并加到积分器中# 限制积分器的值在 -imax 和 imax 之间,防止积分饱和if self._integrator < -self._imax:self._integrator = -self._imaxelif self._integrator > self._imax:self._integrator = self._imaxoutput += self._integrator  # 将积分项加到输出中return output  # 返回计算的 PID 控制器输出值def reset_I(self):self._integrator = 0  # 重置积分器self._last_derivative = float('nan')  # 重置最后的导数值为 NaN
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/362443.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ARM裸机:地址映射

S5PV210的地址映射详解 什么是地址映射&#xff1f; S5PV210属于ARM Cortex-A8架构&#xff0c;32位CPU&#xff0c;CPU设计时就有32根地址线&32根数据线。 32根地址线决定了CPU的地址空间为4G&#xff0c;那么这4G空间如何分配使用&#xff1f;这个问题就是内存映射问题。…

第一后裔The First Descendant官方推荐配置一览

备受玩家期待的免费刷宝游戏第一后裔即将在7月2日上线&#xff0c;玩家可以在游戏中体验不同个性概念和战斗风格的角色&#xff0c;感受The First Descendant世界里酷炫的战斗体验&#xff0c;守护“英格里斯大陆”。很多玩家担心电脑配置不够&#xff0c;游戏上线后无法流畅游…

探索FlowUs息流:个人和团队知识管理稳定解决方案|FlowUs稳定保障你的笔记安全无忧

FlowUs息流&#xff1a;稳定运营保障你的笔记安全无忧 在知识管理工具的选择上&#xff0c;稳定性是用户最关心的问题之一。FlowUs息流以其稳定的运营记录&#xff0c;为用户提供了一个可靠的工作环境。我们深知&#xff0c;一个知识管理平台的稳定性直接影响到团队的生产力和…

Java程序员接单的十条“野路子”,分分钟收入20K!

Java程序员除了主业工作外&#xff0c;也要适当扩展兼职接单这条路。毕竟Java接单可以说是Java程序员进行技术变现的最佳方式之一。 因为Java程序员兼职接单的难度相对更低&#xff0c;单量也比较可观&#xff0c;最重要的是性价比也很顶&#xff0c;且听我一一道来&#xff1a…

springboot 集成阿里云 OSS

引入依赖 <!-- 阿里云oss依赖 --> <dependency><groupId>com.aliyun.oss</groupId><artifactId>aliyun-sdk-oss</artifactId><version>3.9.1</version> </dependency><?xml version"1.0" encoding"…

【图书推荐】CPython设计与实现“适合所有Python工程师阅读的书籍”

目录 一、图书推荐 |【CPython设计与实现】 1.1、书籍介绍 1.2、内容简介 1.3、适合哪些人阅读 1.4、作者译者简介 1.5、购买链接 一、图书推荐 |【CPython设计与实现】 "深入Python核心&#xff0c;揭秘CPython的设计智慧&#xff01;&#x1f4d6; 对于每一位热衷…

前端主流框架-JQuery

Javascript DOM 1 DOM模型Document对象 1.1 DOM模型 DOM【Document Object Model】 &#xff1a;文档对象模型。直白的讲就是通过程序解析结构化文档&#xff08;xml&#xff0c;html&#xff09;的时候&#xff0c;在内存中生成的包含当前结构化文档中所有内容的一个对象模型…

消失的80后都去哪里了

曾经被贴上各种标签的80后&#xff0c;最大的已经44岁&#xff0c;最小的也都35岁了&#xff0c;都已人到中年了。 在80后眼里的弟弟妹妹的90后&#xff0c;已经奔四了&#xff0c;而觉得与80后有代差的95后已是职场主力&#xff0c;而某些80后的孩子00后也已经开始陆续进入职场…

使用Python实现深度学习模型通常涉及以下几个步骤

学习总结 1、掌握 JAVA入门到进阶知识(持续写作中……&#xff09; 2、学会Oracle数据库入门到入土用法(创作中……&#xff09; 3、手把手教你开发炫酷的vbs脚本制作(完善中……&#xff09; 4、牛逼哄哄的 IDEA编程利器技巧(编写中……&#xff09; 5、面经吐血整理的 面试技…

【Vue】集成富文本编辑器

这文章使用的是wangeditor插件&#xff0c;官网地址&#xff1a;wangEditor&#xff0c;这个比较简单 安装 npm i wangeditor --save 使用 <div id"editor"></div>import E from "wangeditor"const editor new E("#editor") e…

猫狗识别—静态图像识别

猫狗识别—静态图像识别 1. 导入必要的库:2. 设置数据目录和模型路径:3. 定义图像转换4. 使用GPU5. 加载没有预训练权重的ResNet模型6. 创建Tkinter窗口:7.定义选择图片的函数:8.定义预测图片的函数:9.退出程序的函数:10.创建按钮:11.运行Tkinter事件循环:12. 完整代码&#xf…

基于YOLOv5+pyqt5的口罩佩戴检测系统(PyQT页面+YOLOv5模型+数据集)

简介 在各种工作环境和公共场所,确保人们正确佩戴口罩对个人防护和公共卫生至关重要,尤其是在医疗设施、制造业车间和拥挤的公共交通中。为了满足这一需求,我们开发了一种基于YOLOv5目标检测模型的口罩佩戴检测系统。本项目不仅实现了高精度的口罩佩戴检测,还设计了一个可…

第四天 怎么又迟到了呀 哎啥时候来准时上个课呀

泛型编程 Traits实现&#xff0c;是什么 泛型编程&#xff08;Generic Programming&#xff09;是一种通过编写与特定类型无关的代码来实现代码复用和抽象的编程范式。 在C中&#xff0c;模板&#xff08;Templates&#xff09;是实现泛型编程的主要手段。 Traits&#xff0…

reactjs18 中使用@reduxjs/toolkit同步异步数据的使用

react18 中使用@reduxjs/toolkit 1.安装依赖包 yarn add @reduxjs/toolkit react-redux2.创建 store 根目录下面创建 store 文件夹,然后创建 index.js 文件。 import {configureStore } from "@reduxjs/toolkit"; import {counterReducer } from "./feature…

CS-隐藏防朔源-数据转发-iptables(Linux自带的防火墙)

免责声明:本文仅做技术交流与学习... 目录 准备环境: 1-iptables转发机设置转发: 2-CS服务器配置iptables服务器的IP 准备环境: 两台外网服务器. --iptables服务器就是做一个中转...封了中转就没了... 1-iptables转发机设置转发: iptables -I INPUT -p tcp -m tcp --dport 8…

Python 基础:使用 unittest 模块进行代码测试

目录 一、测试函数2.1 通过案例2.2 不通过案例2.3 添加新测试 二、测试类2.1 单个测试案例2.2 多个测试案例 三、总结 遇到看不明白的地方&#xff0c;欢迎在评论中留言呐&#xff0c;一起讨论&#xff0c;一起进步&#xff01; 本文参考&#xff1a;《Python编程&#xff1a;…

外贸SEO工具有哪些推荐?

"我们作为一个专业的Google SEO团队&#xff0c;比较推荐一下几个适合外贸SEO的工具。Ahrefs 是一个非常强大的工具&#xff0c;可以帮助你深入分析竞争对手的表现&#xff0c;找到有潜力的关键词&#xff0c;还可以监控你的网站链接状况。另外&#xff0c;SEMrush 也很不…

conda下安装32位版本python

前言&#xff1a;当前主流的系统为64bit系统&#xff0c;conda软件为64bit软件&#xff0c;因此使用conda创建虚拟环境安装python时默认安装的python为64bit版本&#xff0c;但部分研发场景需要调用32bit依赖&#xff0c;只能使用32bit的python&#xff0c;因此需要安装32bit的…

python OpenCV 库中的 cv2.Canny() 函数来对图像进行边缘检测,并显示检测到的边缘特征

import cv2# 加载图像 image cv2.imread(4.png)# 使用 Canny 边缘检测算法提取边缘特征 edges cv2.Canny(image, 100, 200)# 显示边缘特征 cv2.imshow(Edges, edges) cv2.waitKey(0) cv2.destroyAllWindows() 代码解析&#xff1a; 导入 OpenCV 库&#xff1a; import cv2加…

基于Java医院药品交易系统详细设计和实现(源码+LW+调试文档+讲解等)

&#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN作者、博客专家、全栈领域优质创作者&#xff0c;博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌&#x1f497; &#x1f31f;文末获取源码数据库&#x1f31f; 感兴趣的可以先收藏起来&#xff0c;…