计算机毕业设计Python深度学习美食推荐系统 美食可视化 美食数据分析大屏 美食爬虫 美团爬虫 机器学习 大数据毕业设计 Django Vue.js

Python美食推荐系统开题报告

一、项目背景与意义

随着互联网和移动技术的飞速发展,人们的生活方式发生了巨大变化,尤其是餐饮行业。在线美食平台如雨后春笋般涌现,为用户提供了丰富的美食选择。然而,如何在海量的餐饮信息中快速找到符合个人口味和偏好的美食成为了一个新的挑战。因此,开发一个高效、个性化的美食推荐系统显得尤为重要。

本项目旨在利用Python编程语言,结合机器学习、数据挖掘等技术,构建一个能够根据用户的口味偏好、历史行为、地理位置等多维度信息,为用户提供精准美食推荐的系统。这不仅能够提升用户体验,还能帮助餐饮商家更有效地触达潜在客户,实现双赢。

二、研究内容与目标

  1. 数据收集与处理:收集包括用户基本信息、历史点餐记录、评价反馈、地理位置等在内的多源数据,并进行预处理,如数据清洗、特征提取等。

  2. 用户画像构建:基于用户行为数据,运用统计学方法和机器学习算法,构建用户画像,包括用户的口味偏好、消费习惯、活跃度等。

  3. 推荐算法设计与实现:研究并实现基于内容的推荐、协同过滤推荐、深度学习推荐等多种推荐算法,比较其在实际数据集上的表现,选择或融合最优算法。

  4. 系统设计与开发:设计并实现一个用户友好的美食推荐系统,包括前端展示界面和后端处理逻辑,确保系统的实时性、准确性和可扩展性。

  5. 性能评估与优化:通过A/B测试、离线评估等方法,对推荐系统的性能进行量化评估,并根据反馈结果不断优化算法和系统。

三、预期成果

  1. 开发出一套完整的美食推荐系统,能够为用户提供个性化、高质量的美食推荐服务。
  2. 形成一套针对美食推荐领域的数据处理、用户画像构建、推荐算法选择与优化的方法论。
  3. 提升用户体验,增加用户粘性,同时为餐饮商家带来更高的曝光率和客流量。

四、研究方法与技术路线

  1. 文献综述:调研国内外相关研究成果,分析现有美食推荐系统的优缺点。
  2. 数据分析:利用Python进行数据预处理、特征工程,探索性数据分析。
  3. 机器学习:应用Scikit-learn、TensorFlow等库实现推荐算法,并进行模型训练与调优。
  4. 系统开发:采用Flask或Django框架开发后端,HTML/CSS/JavaScript开发前端。
  5. 测试与优化:进行系统测试,收集用户反馈,迭代优化推荐算法和系统功能。

五、时间安排与进度计划

  1. 第1-2周:项目开题,文献调研,需求分析与系统设计。
  2. 第3-6周:数据收集与处理,用户画像构建。
  3. 第7-10周:推荐算法研究与实现,系统初步开发。
  4. 第11-14周:系统集成,测试与优化,用户反馈收集。
  5. 第15周:项目总结,撰写报告,准备答辩。

六、结论

本项目旨在通过Python及相关技术构建一个高效、个性化的美食推荐系统,以解决用户在海量餐饮信息中选择困难的问题,同时助力餐饮商家精准营销。预期成果将为用户带来更佳的用餐体验,也为餐饮行业数字化转型提供有力支持。

核心算法代码分享如下:

#从数据库读取数据到csvimport pandas as pd
from sqlalchemy import create_engine
import pymysqldb_host = 'localhost'
db_username = 'root'
db_password = '123456789'
db_port = 3308
db_name = 'bookcomments'conn = pymysql.connect(host=db_host, user=db_username, password= db_password, db=db_name, port=db_port)engine = create_engine(f'mysql+pymysql://{db_username}:{db_password}@{db_host}:{db_port}/{db_name}')# 从数据库读取数据到 DataFrame
read_data = pd.read_sql('book', con=engine)# 保存pandas的数据到csv
read_data.to_csv('book_all.csv')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/365883.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

GPT-4o文科成绩超一本线,理科为何表现不佳?

目录 01 评测榜单 02 实际效果 什么?许多大模型的文科成绩竟然超过了一本线,还是在竞争激烈的河南省? 没错,最近有一项大模型“高考大摸底”评测引起了广泛关注。 河南高考文科今年的一本线是521分,根据这项评测&…

《塔瑞斯世界》国服震撼登场!AOC助力玩家开启游戏新征途!

一款真正高画质、重机制、轻数值的MMORPG大作! 你是否厌倦了在MMORPG游戏中被“氪金大佬”碾压?你是否渴望一个纯粹依靠技术和策略就能获得成就感的游戏世界?如果你对这两个问题的答案都是肯定的,那么《塔瑞斯世界》或许值得你一…

C++ initializer_list类型推导

目录 initializer_list C自动类型推断 auto typeid decltype initializer_list<T> C支持统一初始化{ }&#xff0c;出现了一个新的类型initializer_list<T>&#xff0c;一切类型都可以用列表初始化。提供了一种更加灵活、安全和明确的方式来初始化对象。 class…

2024年道路运输安全员(企业管理人员)备考题库资料。

46.危险货物道路运输随车携带的单据&#xff0c;下列选项不属于的是&#xff08;&#xff09;。 A.道路运输危险货物安全卡 B.运单或者电子运单 C.道路危险货物运输从业资格证 D.车辆检测报告 答案&#xff1a;D 47.危险货物运输驾驶人员在24小时内实际驾驶车辆时间累计不…

老挝-海外媒体发稿:媒体宣发超给力,打造完美产业链

引言 老挝新闻网&#xff08;laosnews&#xff09;通过海外媒体发稿的方式&#xff0c;取得了显著的成就。借助媒体宣发的力量&#xff0c;老挝成功打造了一个完美的产业链&#xff0c;进一步推动了本国经济的发展。本文将探讨老挝-海外媒体发稿的优势以及产业链的构建和发展。…

完美世界|单机版合集(共22个版本)

前言 我是研究单机的老罗&#xff0c;今天给大家带来的是完美世界的单机版合集&#xff0c;一共22个版本。本人亲自测试了一个版本&#xff0c;运行视频如下&#xff1a; 完美世界|单机版合集 先看所有的版本的文件&#xff0c;文件比较大&#xff0c;准备好空间&#xff0c;差…

2024上海CDIE 参展预告 | 一站式云原生数字化平台已成趋势

为什么企业需要进行数字化转型&#xff1f;大家都在讨论的数字化转型面临哪些困境&#xff1f;2024.6.25-26 CDIE数字化创新博览会现场&#xff0c;展位【A18】&#xff0c;期待与您相遇&#xff0c;共同探讨企业如何利用数字化技术驱动业务增长。 一、展会介绍——CDIE数字化…

论坛万能粘贴手(可将任意文件转为文本)

该软件可将任意文件转为文本。 还原为原文件的方法&#xff1a;将得到的文本粘贴到记事本&#xff0c;另存为UUE格式&#xff0c;再用压缩软件如winrar解压即可得到原文件。建议用于小软件。 下载地址&#xff1a;https://download.csdn.net/download/wgxds/89505015 使用演示…

C#中的时间数据格式化详解与应用示例

文章目录 1、基本概念基本格式化方法 2、实用的时间格式化方法格式化日期格式化时间格式化时间戳解析日期时间字符串 3、实际应用4、应用示例结论 在软件开发中&#xff0c;时间数据是无处不在的。无论是用户登录时间、数据备份时间&#xff0c;还是日志记录&#xff0c;都需要…

复制完若依后,idea没有maven窗口

右击项目 添加框架 添加maven框架就可以了

高斯过程的数学理解

目录 一、说明 二、初步&#xff1a;多元高斯分布 三、 线性回归模型与维度的诅咒 四、高斯过程的数学背景 五、高斯过程的应用&#xff1a;高斯过程回归 5.1 如何拟合和推理高斯过程模型 5.2 示例&#xff1a;一维数据的高斯过程模型 5.3 示例&#xff1a;多维数据的高斯过程模…

Kubernetes的发展历程:从Google内部项目到云原生计算的基石

目录 一、起源与背景 1.1 Google的内部项目 1.2 Omega的出现 二、Kubernetes的诞生 2.1 开源的决策 2.2 初期发布 三、Kubernetes的发展历程 3.1 社区的成长 3.2 生态系统的壮大 3.3 重大版本和功能 3.4 多云和混合云的支持 四、Kubernetes的核心概念 4.1 Pod 4.…

Mustango——音乐领域知识生成模型探索

Mustango&#xff1a;利用领域知识的音乐生成模型 论文地址&#xff1a;https://arxiv.org/pdf/2311.08355.pdf 源码地址&#xff1a;https://github.com/amaai-lab/mustango 论文题为**“**利用音乐领域知识开发文本到音乐模型’Mustango’”。它利用音乐领域的知识从文本指…

明日周刊-第14期

不好意思又拖更了哈哈哈。不过赶在7月的第一天&#xff0c;打算更新一下。建党节&#xff0c;值得纪念的一天。 文章目录 一周热点资源分享言论歌曲推荐 一周热点 国内科技新闻 深中通道建成通车 时间&#xff1a;2024年6月30日 内容&#xff1a;深圳至中山跨江通道正式建成开…

【Spring Boot】spring boot环境搭建

1、环境准备 JDK安装&#xff1a;确保安装了Java Development Kit (JDK) 1.8或更高版本。JDK是Java编程的基础&#xff0c;Spring Boot项目需要它来编译和运行。Maven或Gradle安装&#xff1a;选择并安装Maven或Gradle作为项目构建工具。Maven通过pom.xml文件来管理项目的依赖…

PCL 基于点云RGB颜色的区域生长算法

RGB颜色的区域生长算法 一、概述1.1 算法定义1.2 算法特点1.3 算法实现二、代码示例三、运行结果🙋 结果预览 一、概述 1.1 算法定义 点云RGB区域生长算法: 是一个基于RGB颜色信息的区域生长算法,用于点云分割。该算法利用了点云中相邻点之间的颜色相似性来将点云分割成…

nodejs--【Express基本使用】

10 【Express基本使用】 https://www.expressjs.com.cn/ 基于 Node.js 平台&#xff0c;快速、开放、极简的 web 开发框架。 1.Express的安装方式 Express的安装可直接使用npm包管理器上的项目&#xff0c;在安装npm之前可先安装淘宝镜像&#xff1a; npm install -g cnpm -…

【从零开始学架构 架构基础】五 架构设计的复杂度来源:低成本、安全、规模

架构设计的复杂度来源其实就是架构设计要解决的问题&#xff0c;主要有如下几个&#xff1a;高性能、高可用、可扩展、低成本、安全、规模。复杂度的关键&#xff0c;就是新旧技术之间不是完全的替代关系&#xff0c;有交叉&#xff0c;有各自的特点&#xff0c;所以才需要具体…

vue中路由来回切换页面直接卡死

今天发现一个很严重的问题&#xff0c;项目好不容易做好了&#xff0c;结果页面多了&#xff0c;切换之后卡死。页面所有的交互效果都失效了。 排查了许久的错误原因最后发现原来是路由名称重复了。 如上图当页面跳转到riskdetails详细页面之后&#xff0c;框架则被这个详情页…

rga_mm: RGA_MMU unsupported Memory larger than 4G!解决

目录 报错完整log如下:解决方案:报错完整log如下: [ 3668.824164] rga_mm: RGA_MMU unsupported Memory larger than 4G! [ 3668.824305] rga_mm: scheduler core[4] unsupported mm_flag[0x0]! [ 3668.824320] rga_mm: rga_mm_map_buffer map dma_buf err