分解+降维+预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测

分解+降维+预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测

目录

    • 分解+降维+预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.MATLAB实现EMD-KPCA-Transformer多变量时间序列光伏功率预测;

2.多变量时间序列预测 就是先emd把原输入全分解变成很多维作为输入KPCA降维 再输入Transformer预测 ;

3.运行环境Matlab2023b及以上,输出RMSE、R2、MAPE、MAE等多指标对比,

先运行main1_EMD,进行emd分解;再运行main2_KPCA降维;再运行main3_EMD_KPCA_Transformer建模预测。

注意:一种算法不是万能的,不同的数据集效果会有差别,后面的工作就是需要调整参数;

4.运行环境为Matlab2023b及以上;

5.数据集为excel,光伏数据集,输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,所有文件放在一个文件夹;

6.命令窗口输出R2、RMSE、MAE、MAPE等多指标评价。

购&买后可加点击文章底部卡片博主咨询交流。注意:其他非官方渠道购&买的盗版代码不含模型咨询交流服务,大家注意甄别,谢谢。

在这里插入图片描述

程序设计

  • 完整程序和数据下载私信博主回复分解+降维+预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测

clc;
clear 
close all%% Transformer预测
tic
load origin_data.mat
load emd_data.mat
load KPCA_data.mat%% EMD-KPCA-Transformer预测
tic
disp('…………………………………………………………………………………………………………………………')
disp('EMD-KPCA-Transformer预测')
disp('…………………………………………………………………………………………………………………………')data=[KPCA_data X(:,end)];num_samples = length(data);    % 样本个数 
kim = 5;                       % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
or_dim = size(data,2);
res=[];
%  重构数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(data(i: i + kim - 1,:), 1, kim*or_dim), data(i + kim + zim - 1,:)];
end% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/366881.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[数据集][目标检测]水面垃圾水面漂浮物检测数据集VOC+YOLO格式3749张1类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):3749 标注数量(xml文件个数):3749 标注数量(txt文件个数):3749 标注…

聊聊etsy平台,一个年入百万的项目

聊聊etsy平台,一个年入百万的项目 什么是etsy,这是怎样一个平台,怎样盈利的?相信现在大家满脑子都是这些疑问。 这个平台也是无意间一个学员提到的,据说他朋友靠这个平台年赚好几百万。苦于门槛太高,他也做不了。今天…

web权限到系统权限 内网学习第一天 权限提升 使用手工还是cs???msf可以不??

现在开始学习内网的相关的知识了,我们在拿下web权限过后,我们要看自己拿下的是什么权限,可能是普通的用户权限,这个连添加用户都不可以,这个时候我们就要进行权限提升操作了。 权限提升这点与我们后门进行内网渗透是乘…

ATFX汇市:欧元区CPI与失业率数据同时发布,欧元或迎剧烈波动

ATFX汇市:CPI数据是中央银行决策货币政策的主要依据,失业率数据是中央银行判断劳动力市场健康状况的核心指标。欧元区的CPI和失业率数据将在今日17:00同时发布,在欧央行6月6日降息一次的背景下,两项数据将显著影响国际市场对欧央行…

问题-小技巧-Win11的常用快捷方式和有用快捷方式

文章目录 常用快捷方式1、CtrlA 全部选中2、Ctrl Z 撤销3、Ctrl X 剪切4、Ctrl C 粘贴5、Ctrl V 复制6、winshifts截图,Windows系统自带截图工具,功能太少7、ctrlshifts截图,edge自带截图工具,使用时需要打开edge8、 winv 可以查看…

C盘清理和管理

本篇是C盘一些常用的管理方法,以及定期清理C盘的方法,大部分情况下都能避免C盘爆红。 C盘清理和管理 C盘存储管理查看存储情况清理存储存储感知清理临时文件清理不需要的 迁移存储 磁盘清理桌面存储管理应用存储管理浏览器微信 工具清理 C盘存储管理 查…

C#的五大设计原则-solid原则

什么是C#的五大设计原则,我们用人话来解释一下,希望小伙伴们能学会: 好的,让我们以一种幽默的方式来解释C#的五大设计原则(SOLID): 单一职责原则(Single Responsibility Principle…

通过容器启动QAnything知识库问答系统

QAnything (Question and Answer based on Anything) 是致力于支持任意格式文件或数据库的本地知识库问答系统,可断网安装使用。目前已支持格式:PDF(pdf),Word(docx),PPT(pptx),XLS(xlsx),Markdown(md)&…

2024年教育政策与实践研讨会(ICEPP 2024)

随着全球化的不断深入,教育作为国家发展的基石,其政策与实践的探讨愈发显得重要。为此,备受瞩目的教育政策与实践研讨会(ICEPP 2024)将于2024年11月8日至10日在中国武汉隆重举行。此次会议汇聚了国内外众多专家学者&am…

浅谈k8s中cni0和docker0的关系和区别

最近在复习k8s网络方面的知识,查看之前学习时整理的笔记和文档还有过往自己总结的博客之后发现一个问题,就是在有关flannel和calico这两个k8s网络插件的文章和博客中,会涉及到cni0和docker0这两个网桥设备,但是都没有明确说明他们…

AI教育行业全景图(最新版);AI时代内容创作者的窘境;2年内AI教育赛道的切入机会;可汗学院创始人「AI教育革命」新书问世 | ShowMeAI日报

👀日报&周刊合集 | 🎡生产力工具与行业应用大全 | 🧡 点赞关注评论拜托啦! 1. 可汗学院 (Khan Academy) 创始人新书发布:AI将如何颠覆传统教育 可汗学院(Khan Academy)是 Salman Khan 创立的…

LabVIEW项目外协时选择公司与个人兼职的比较

​在选择LabVIEW项目外协合作伙伴时,外协公司和个人兼职各有优劣。个人兼职成本较低且灵活,但在可靠性、技术覆盖面、资源和风险管理上存在不足。而外协公司拥有专业团队、丰富资源、完善的项目管理和风险控制,尽管成本较高,但能提…

分享一款Type C接口USB转2路485模块【带完整原理图】

大家好,我是『芯知识学堂』的SingleYork,今天给大家分享一款很实用的工具–基于Type C接口的USB转2路485模块。 这款模块主芯片采用南京沁恒的CH342F这款芯片,芯片特性如下: 该系列芯片有QFN24和ESSOP10 这2种封装,…

leetcode-20-回溯-切割、子集

一、[131]分割回文串 给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串。 返回 s 所有可能的分割方案。 示例: 输入: "aab" 输出: [ ["aa","b"], ["a","a","b"] ] 分析&…

Steam页面打不开?steam显示当前游戏不可用是怎么回事

Steam是全球最大的游戏综合发行平台,每年为无数玩家呈现了多款精彩游戏,不过由于网络问题或其他异常因素影响,有很多玩家会在访问steam或steam的游戏商品页时,遇到Steam提示当前游戏在您平台不可用、打不开游戏页面的情况&#xf…

PCL 点云最小图割(前景、背景点云提取)

点云最小图割 一、概述1.1 概念1.2 算法原理二、代码示例三、运行结果🙋 结果预览 一、概述 1.1 概念 最小图割算法(pcl::MinCutSegmentation):是一种基于图论的对象分割方法,主要用于点云数据的处理和分析。该算法将点云数据表示为一个图结构,其中点云中的点作为图的节…

自然语言处理——英文文本预处理

高质量数据的重要性 数据的质量直接影响模型的性能和准确性。高质量的数据可以显著提升模型的学习效果,帮助模型更准确地识别模式、进行预测和决策。具体原因包括以下几点: 噪音减少:高质量的数据经过清理,减少了无关或错误信息…

【揭秘】国内十大顶尖AI大模型,引领智能科技新纪元

大模型大模型通常指的是参数量非常大、数据量也非常大的深度学习模型。这些模型由数百万到数十亿甚至更多的参数组成,需要海量的数据和强大的计算资源进行训练和推理学习的模型。大模型设计的目的在于提高模型的表示能力和性能、应对复杂数据集和任务、提升泛化能力…

家政小程序的开发,带动市场快速发展,提高家政服务质量

当下生活水平逐渐提高,也增加了年轻人的工作压力,同时老龄化也在日益增加,使得大众对家政的需求日益提高,能力、服务质量高的家政人员能够有效提高大众的生活幸福指数。 但是,传统的家政服务模式存在着效率低、用户与…

Qt的学习之路

目录 一、信号槽机制 1.1 基本概念 1.2 特点 1.3 使用方法 1.4 信号槽连接类型 1.5 注意 二、元对象系统 2.1 基本概念 2.2 实现方式 2.3 主要特性 2.4 使用场景 2.5 元对象系统如何识别信号槽 三、国际化 3.1 标记可翻译的文本(tr函数) …