【人工智能学习之图像操作(一)】
- 图像读写
- 创建图片并保存
- 视频读取
- 色彩空间与转换
- 色彩空间的转换
- 通道分离
- 理解HSV
- 基本图形绘制
- 阀值操作
- OTSU二值化
- 简单阀值
- 自适应阀值
图像读写
图像的读取、显示与保存
import cv2
img = cv2.imread(r"1.jpg")
cv2.imshow("pic show", img)
cv2.waitKey(0)
cv2图像读取的返回值是一个numpy数据类型
print(type(img))
#out:<class 'numpy.ndarray'>
创建图片并保存
import numpy as np
import cv2
img = np.empty((200, 200, 3), np.uint8)
img[..., 0] = 255
img[..., 1] = 0
img[..., 2] = 0
cv2.imwrite("2.jpg", img)
打开保存的图片,我们发现图片是纯蓝色的,由此我们可以知道opencv读入的图片是BGR格式。
视频读取
读取视频或摄像头,并显示
import cv2
cap = cv2.VideoCapture(0)
#cap = cv2.VideoCapture("1.mp4")
while True:ret, frame = cap.read()cv2.imshow('frame', frame)if cv2.waitKey(1) & 0xFF == ord('q'):break
cap.release()
cv2.destroyAllWindows()
色彩空间与转换
色彩空间的转换
RGB/RGBA/GRAY/HSV/YUV
import cv2
src = cv2.imread(r"1.jpg")
dst = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
# dst = cv2.cvtColor(src, cv2.COLOR_BGR2YUV)
cv2.imshow("src show", src)
cv2.imshow("dst show", dst)
cv2.waitKey(0)
通道分离
import cv2
img = cv2.imread(r"1.jpg")
img[..., 0] = 0
img[..., 1] = 0
cv2.imshow("dst show", img)
cv2.waitKey(0)
理解HSV
HSV颜色空间
HSV 格式中,H(色彩/色度)的取值范围是 [0,179],S(饱和度)的取值范围 [0,255],V(亮
度)的取值范围 [0,255]。但是不同的软件使用的值可能不同。所以当你需要拿 OpenCV 的 HSV
值与其他软件的 HSV 值进行对比时,一定要记得归一化。
HSV中,我们按颜色提取变得会更加方便。
import cv2
import numpy as np
img = cv2.imread("3.jpg")
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
lower_blue = np.array([100, 200, 100])
upper_blue = np.array([200, 255, 200])
mask = cv2.inRange(hsv, lower_blue, upper_blue)
res = cv2.bitwise_and(img, img, mask=mask)
cv2.imshow('frame', img)
cv2.imshow('mask', mask)
cv2.waitKey(0)
import cv2
import numpy as np
color=np.uint8([[[21,94,214]]])
hsv_color=cv2.cvtColor(color,cv2.COLOR_BGR2HSV)
print(hsv_color)
基本图形绘制
直线、圆、椭圆、矩形:
import cv2
img = cv2.imread(r"1.jpg")
# cv2.line(img, (100, 30), (210, 180), color=(0, 0, 255), thickness=2)
# cv2.circle(img, (50, 50), 30, (0, 0, 255), 1)
cv2.rectangle(img,(100,30),(210,180),color=(0,0,255),thickness=2)
# cv2.ellipse(img, (100, 100), (100, 50), 0, 0, 360, (255, 0, 0), -1)
cv2.imshow("pic show", img)
cv2.waitKey(0)
多边形:
import cv2
import numpy as np
img = cv2.imread(r"1.jpg")
# 定义四个顶点坐标
pts = np.array([[10, 5], [50, 10], [70, 20], [20, 30]], np.int32)
# 顶点个数:4,矩阵变成4*1*2维
pts = pts.reshape((-1, 1, 2))
cv2.polylines(img, [pts], True, (0, 0, 255), 2)
cv2.imshow("pic show", img)
cv2.waitKey(0)
文字:
import cv2
img = cv2.imread(r"1.jpg")
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img, 'beautiful girl', (10, 30), font, 1, (0, 0, 255), 1,
lineType=cv2.LINE_AA)
cv2.imshow("pic show", img)cv2.waitKey(0)
阀值操作
OTSU二值化
import cv2
img = cv2.imread("1.jpg")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
cv2.imshow("gray",gray)
cv2.imshow('binary', binary)
cv2.waitKey(0)
简单阀值
与名字一样,这种方法非常简单。但像素值高于阈值时,我们给这个像素赋予一个新值(可能是白
色),否则我们给它赋予另外一种颜色(也许是黑色)。这个函数就是 cv2.threshhold()。这个函数的第一个参数就是原图像,原图像应该是灰度图。第二个参数就是用来对像素值进行分类的阈值。第三个参数就是当像素值高于(有时是小于)阈值时应该被赋予的新的像素值。OpenCV提供了多种不同的阈值方法,这是有第四个参数来决定的。这些方法包括:
- cv2.THRESH_BINARY
- cv2.THRESH_BINARY_INV
- cv2.THRESH_TRUNC
- cv2.THRESH_TOZERO
- cv2.THRESH_TOZERO_INV
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('5.jpg',0)
ret,thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
ret,thresh2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
ret,thresh3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC)
ret,thresh4 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO)
ret,thresh5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV)
titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]
for i in range(6):plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')plt.title(titles[i])plt.xticks([]),plt.yticks([])
plt.show()
自适应阀值
前面的部分我们使用是全局阈值,整幅图像采用同一个数作为阈值。当时这种方法并不适应与所有情况,尤其是当同一幅图像上的不同部分的具有不同亮度时。这种情况下我们需要采用自适应阈值。此时的阈值是根据图像上的每一个小区域计算与其对应的阈值。因此在同一幅图像上的不同区域采用的是不同的阈值,从而使我们能在亮度不同的情况下得到更好的结果。
这种方法需要我们指定三个参数,返回值只有一个。
- Adaptive Method- 指定计算阈值的方法。
- cv2.ADPTIVE_THRESH_MEAN_C:阈值取自相邻区域的平均值
- cv2.ADPTIVE_THRESH_GAUSSIAN_C:阈值取值相邻区域的加权和,权重为一个高斯窗口。
- Block Size - 邻域大小(用来计算阈值的区域大小)。
- C - 这就是是一个常数,阈值就等于的平均值或者加权平均值减去这个常数
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('4.jpg', 0)
img = cv2.GaussianBlur(img, (5, 5), 0)
ret, th1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
th2 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
th3 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 11, 2)
titles = ['Original Image', 'Global Thresholding (v = 127)','Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
images = [img, th1, th2, th3]
for i in range(4):plt.subplot(2, 2, i + 1), plt.imshow(images[i], 'gray')plt.title(titles[i])plt.xticks([]), plt.yticks([])
plt.show()