基于Transformer的端到端的目标检测 | 读论文

image.png

本文正在参加 人工智能创作者扶持计划

提及到计算机视觉的目标检测,我们一般会最先想到卷积神经网络(CNN),因为这算是目标检测领域的开山之作了,在很长的一段时间里人们都折服于卷积神经网络在图像处理领域的优势;再后来,随着图像领域的大神不断出现,结构简单且速度精度均有提升的目标检测网络也逐渐问世,并且版本的更迭使其应用优势越来越大,最有代表性的是YOLO,目前仍是目标检测的热门。然而,人们对于目标检测的方法仍然进行不断探索,今天就通过一篇基于Transformer的目标检测方法的论文,带领大家换个角度去看待目标检测问题。

论文地址:arxiv.org/pdf/2005.12…

代码地址:github.com/facebookres…

image.png

Transformer

Transformer是第一个完全依赖于自注意力机制来计算其输入和输出的表示的转换模型。Transformer的本质上是一个 Encoder-Decoder 架构。左边的是编码器结构,右边的是解码器结构。结构示意图如下。

image.png

DETR

DETR的简介

DETRDetection Transformer,是Facebook AI的研究者提出的Transformer的视觉版本,可以用于目标检测,也可以用于全景分割。这是第一个将Transformer成功整合为检测pipeline中心构建块的目标检测框架。与之前的目标检测方法相比,DETR有效地消除了对许多手工设计的组件的需求,例如非最大抑制、Anchor生成等。

DETR的流程

  1. 通过一个CNN对输入图片抽取特征,然后将特征图降维,加上位置编码拉直输入Transformer。

  2. Transformer Encoder部分就是使得网络更好地去学习全局的特征;

  3. 使用Transformer Decoder以及Object Query从特征中学习要检测的物体;

  4. 将Object Query的结果和真值进行二分图匹配(Set-to-Set Loss),最后在匹配上的结果上计算分类Loss和位置回归Loss。

DETR的结构

image.png

DETR的网络结构如上图所示,由四个主要模块组成:backbone,编码器,解码器以及预测头。其中backbone是一个卷积网络,提取特征并将其降维到d×HWspatial positional encoding将位置信息编码到特征中,使得模型能够更好地理解物体之间的空间关系。DETR使用了两个Transformer模块,分别作为编码器和解码器。其中编码器用于处理输入特征,解码器用于处理输出特征。DETR使用了一个全连接层来进行分类。

下面具体介绍一下各个模块的作用。

backbone

DETR使用ResNet作为backbone提取图片特征,同时会使用一个1×1的卷积进行降维到d×HW。因为transformer的编码器模块只处理序列输入,所以后续还需要把CNN特征展开为一个序列。

spatial positional encoding

image.png

式中,PE为二维矩阵,大小跟输入embedding的维度一样,行表示词语,列表示词向量;pos表示词语在句子中的位置;dmodel表示词向量的维度;i表示词向量的位置。因此,上述公式表示在每个词语的词向量的偶数位置添加sin变量,奇数位置添加cos变量,从而来填满整个PE矩阵,然后concatenate送到编码器中。简要概括就是将位置信息编码到特征中,使得模型能够更好地理解物体之间的空间关系。

transformer

DETR使用了两个Transformer模块,分别作为编码器和解码器。其中编码器用于处理输入特征,解码器用于处理输出特征。结构图如下:

image.png

与原始Transformer的不同之处在于,DETR在每个解码器层并行解码N个对象,由于解码器也是排列不变的,N个输入嵌入必须是不同的,以产生不同的结果。这些输入嵌入是习得的位置编码,我们称之为object queries,与编码器类似,我们将它们添加到每个注意层的输入中。

N个object queries由解码器转换为output embedding。然后,它们被FFN独立解码为盒坐标和类标签,产生N个最终预测。该模型使用它们之间的成对关系对所有对象进行全局推理,同时能够使用整个图像作为上下文。

FNN

最后的 Bounding Box FFN 是由具有ReLU激活函数的3层线性层计算的。 Class FFN是由一个线性层计算的。 FFN预测框标准化中心坐标,高度和宽度,使用softmax 函数激活获得预测类标签。所以DETR使用了一个全连接层来进行分类。

二分图匹配

image.png

DETR预测了一组固定大小的 N = 100 个边界框,为了解决预测框和真实标注框匹配的问题,使用匈牙利算法进行二分图匹配,即对预测集合和真实集合的元素进行一一对应,使得匹配损失最小。

该算法实现预测值与真值之间最优的匹配,并且是一一对应,不会多个预测值匹配到同一个ground truth上。假设预测结果是100个,那么标注信息也要是100个,标注如果小于100就用无物体信息去填充。

LOSS函数

image.png

分类损失:交叉熵损失函数

检测框位置损失:L1损失和IOU损失的加权和,且Iou的计算采用了GIOU损失

DETR的优势

DETR相对于Faster-RCNN具有更简单的架构,更小的网络(参数方面),更高的吞吐量和更快的训练。此外,DETR是基于Transformer架构的,该架构自2017年以来已经“革命化”了自然语言处理。其中一个主要优点是其全局计算和完美记忆,这使得它们比RNN更适合处理长序列。

总结

这篇论文主要介绍了一种名为“DEtection TRansformer”(DETR)的新框架,它使用了一种基于集合的全局损失,通过二分图匹配强制进行唯一预测,并使用transformer编码器-解码器架构。DETR可以在挑战性的COCO物体检测数据集上展示与Faster RCNN基线相当的准确性和运行时性能。此外,DETR可以轻松地推广到以统一的方式生成全景分割。

其它

论文中还提到了其他的,比如目标检测的实现细节之类的,以及其在不同数据集上的实现效果,感兴趣的可以自己去看一下论文。

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/368940.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据库】E-R图、E-R模型到关系模式的转换、关系代数表达式、范式

一、E-R图 1、基本概念 2、实体集之间的联系 3、E-R图要点 (1)实体(型)的表示 (2)E-R图属性的表示 (3)联系的表示 4、E-R模型的例题 二、E-R模型到关系模式的转换 1、实体型的转换…

使用getline()从文件中读取一行字符串

我们知道,getline() 方法定义在 istream 类中,而 fstream 和 ifstream 类继承自 istream 类,因此 fstream 和 ifstream 的类对象可以调用 getline() 成员方法。 当文件流对象调用 getline() 方法时,该方法的功能就变成了从指定文件…

基于STM32F103C8T6的同步电机驱动-CubeMX配置与IQmath调用

基于STM32F103C8T6的同步电机驱动-CubeMX配置与IQmath调用 一、功能描述: 上位机通过CAN总线实现对电机的运动控制,主要包含三种模式:位置模式、速度模式以及力矩模式。驱动器硬件核心为STM32F103C8T6,带相电压采集电路以及母线电压采集电路。其中供电电压12V。 PWM中心对…

【单片机毕业设计选题24047】-基于阿里云的工地环境监测系统

系统功能: 基于STM32完成 主机(阿里云以及oled屏显示位置一):烟雾检测,温湿度检测,噪声检测,且用OLED屏显示,设置阈值,超过报警(蜂鸣器)。 从机&#xff0…

LeetCode题练习与总结:对链表进行插入排序--147

一、题目描述 给定单个链表的头 head ,使用 插入排序 对链表进行排序,并返回 排序后链表的头 。 插入排序 算法的步骤: 插入排序是迭代的,每次只移动一个元素,直到所有元素可以形成一个有序的输出列表。每次迭代中,…

Element中的日期时间选择器DateTimePicker和级联选择器Cascader

简述:在Element UI框架中,Cascader(级联选择器)和DateTimePicker(日期时间选择器)是两个非常实用且常用的组件,它们分别用于日期选择和多层级选择,提供了丰富的交互体验和便捷的数据…

【server】nacos 安装

1、本地安装 1.1 nacos官网 Nacos官网| Nacos 配置中心 | Nacos 下载| Nacos 官方社区 | Nacos 官网 git 下载地址:https://github.com/alibaba/nacos/releases 1.2 解压并修改配置 1.2.1 通过properties 修改配置,添加数据库配置 1.2.2 创建数据库&…

字节码编程ASM之生成变量并sout

写在前面 本文看下如何通过asm生成变量并sout。 1:代码 直接看代码吧,注释很详细,有不懂的,留言告诉我: package com.dahuyuo.asmtest;import org.objectweb.asm.*; import org.objectweb.asm.commons.AdviceAdapt…

VCS+Vivado联合仿真BUG

场景: 在vcsvivado联合仿真过程中,对vivado导出的shell脚本修改,修改某些source文件路径,vcs编译时会报Permission Denied。 问题描述 对shell脚本修改如下: 修改仅为注释掉某一行,下面变为source文件新…

Linux shell编程学习笔记62: top命令 linux下的任务管理器

0 前言 top命令是Unix 和 Linux下常用的性能分析工具,提供了一个动态的、交互式的实时视图,显示系统的整体性能信息,以及正在运行的进程的相关信息,包括各个进程的资源占用状况,类似于Windows的任务管理器。 1 top命令…

数据特征采样在 MySQL 同步一致性校验中的实践

作者:vivo 互联网存储研发团队 - Shang Yongxing 本文介绍了当前DTS应用中,MySQL数据同步使用到的数据一致性校验工具,并对它的实现思路进行分享。 一、背景 在 MySQL 的使用过程中,经常会因为如集群拆分、数据传输、数据聚合等…

【堆 优先队列】23. 合并 K 个升序链表

本文涉及知识点 堆 优先队列 LeetCode23. 合并 K 个升序链表 给你一个链表数组,每个链表都已经按升序排列。 请你将所有链表合并到一个升序链表中,返回合并后的链表。 示例 1: 输入:lists [[1,4,5],[1,3,4],[2,6]] 输出&#…

基流科技:超算界的新星,Pre-A轮融资大获成功

基流科技:超算界的新星,Pre-A轮融资大获成功! 在科技的浪潮中,一颗新星正在冉冉升起——基流科技,一家开放算力网络提供商,以其革命性的技术在超算界引起了轰动。今年年初,基流科技完成了 Pre-A 轮融资,由光速光合领投,此前已获得奇绩创坛、微梦传媒等知名投资方的青…

mysql定时备份数据库

文章目录 核心目标思路具体方法一、编写脚本二、修改文件属性三、找一个mysqldump文件四、把.sh放到定时器里 其它:windows的脚本 核心目标 解决数据库定时备份的工作。centos环境。 思路 用centos的crontab定时执行脚本。 具体方法 一、编写脚本 编写backup_…

Kafka集群部署(手把手部署图文详细版)

1.1.1 部署zookpeer 在node02下载并解压zookeeper软件包 cd /usr/local wget https://archive.apache.org/dist/zookeeper/zookeeper-3.4.6/zookeeper-3.4.6.tar.gz 或者:scp cat192.168.28.100:/home/cat/zookeeper-3.4.6.tar.gz /tmp(注意目录&#xf…

鸿蒙小案例-首选项工具类

一个简单的首选项工具类 主要提供方法 初始化 init()方法建议在EntryAbility-》onWindowStageCreate 方法中使用 没多少东西,放一下测试代码 import { PrefUtil } from ./PrefUtil; import { promptAction } from kit.ArkUI;Entry Component struct PrefIndex {St…

计算机的错误计算(二十一)

摘要 两个不相等数相减,差为0: ? 在计算机的错误计算(十九)中,高中生小明发现本应为0的算式结果不为0. 今天他又发现对本不为0的算式,计算机的输出为0. 在 Python 中计算 : 则输出为0. 若用 C…

@react-google-maps/api实现谷歌地图嵌入React项目中,并且做到点击地图任意一处,获得它的经纬度

1.第一步要加入项目package.json中或者直接yarn install它都可以 "react-google-maps/api": "^2.19.3",2.加入项目中 import AMapLoader from amap/amap-jsapi-loader;import React, { PureComponent } from react; import { GoogleMap, LoadScript, Mar…

RabbitMQ消息可靠性等机制详解(精细版三)

目录 七 RabbitMQ的其他操作 7.1 消息的可靠性(发送可靠) 7.1.1 confim机制(保证发送可靠) 7.1.2 Return机制(保证发送可靠) 7.1.3 编写配置文件 7.1.4 开启Confirm和Return 7.2 手动Ack(保证接收可靠) 7.2.1 添加配置文件 7.2.2 手动ack 7.3 避免消息重复消费 7.3.…

JAVA:文件防重设计指南

1、简述 在现代应用程序中,处理文件上传是一个常见的需求。为了保证文件存储的高效性和一致性,避免重复存储相同的文件是一个重要的优化点。本文将介绍一种基于哈希值的文件防重设计,并详细列出实现步骤。 2、设计原理 文件防重的基本思路…