模拟5亿年自然进化史,全新蛋白质大模型ESM3诞生!前Meta老将力作LeCun转赞

模拟5亿年自然进化史,全新蛋白质大模型ESM3诞生!前Meta老将力作LeCun转赞。

在这里插入图片描述

能抗衡AlphaFold 3的生命科学大模型终于出现了。初创公司Evolutionary Scale AI发布了他们最新的98B参数蛋白质语言模型ESM3。不仅支持序列、结构、功能的all-to-all推理,团队还在实验中发现,它设计的新蛋白质相当于模拟自然界5亿年的进化。
继AlphaFold 3更新后,我们又看到了一个生命科学领域的大模型ESM3。

模型开发团队来自于名为Evolutionary Scale AI的初创公司,团队负责人Alex Rives在推特上官宣了模型发布的消息。

这个令人振奋的消息也得到了Yann LeCun的转发,他表示,你们这个公司有点「闷声发大财」的意思。

在这里插入图片描述

相比AlphaFold系列,ESM3有什么竞争优势?

首先就是Meta团队轻车熟路的——开源。

虽然模型API仍处于内测阶段,需要申请试用资格,但模型代码已经放到了GitHub上。而且公司还会与AWS和英伟达云计算平台合作,方便开发者使用和部署。

仓库地址:https://github.com/evolutionaryscale/esm

但比较遗憾的是,目前在HuggingFace仓库中还没有公开模型权重。英伟达官方博客显示,ESM3将在Nvidia BieNeMo平台提供一个小型开源版本的代码和权重,但仅限于非商业用途。

仓库地址:https://huggingface.co/EvolutionaryScale/esm3-sm-open-v1/tree/main

此外,ESM3与不同于模拟多种生物分子的AlphaFold 3,只专注于蛋白质,但可以同时推理其序列、结构和功能,这种多模态能力属于领域首创。

更让人耳目一新的是,ESM3在自然界中27.8亿个多样化蛋白质上进行训练,逐渐学习到了进化过程如何让蛋白质发生变化。

从这个角度来看,ESM的推理过程可以被视为「进化模拟器」,这为当前的生命科学研究开辟了全新的视角。团队甚至在官网文章中提出了「模拟5亿年进化」的标语。

或许你已经注意到了,ESM这个名字和Meta之前的蛋白质模型ESMFold非常类似。

这并不是有意擦边。事实上,Evolutionary Scale这家初创公司就是Meta-FAIR蛋白质小组的前成员创办的,公司的首席科学家Alex Rives正是这个已解散团队的前负责人。

去年8月,在Meta的「效率年」中,扎克伯格选择解散了只有十几名科学家的蛋白质小组,让公司专注于更有盈利前景的研究。

但Rives并没有被Meta的这种举动吓倒,而是决定自立门户,他们目前已经筹集了1.42亿美元的种子资金。

那么就来仔细看看,这次的ESM3具体有哪些新内容?

ESM3:生物学的前沿语言模型

生命科学并不像我们想象的那般神秘莫测、不可捉摸。

蛋白质分子虽然有难以置信的多样性和动态变化,但是它的合成遵循严密的算法与流程。如果把它看成一门技术,其先进程度远远超过任何人类创造的工程。

生物学,就是一个厚厚的密码本。

只不过,这个密码本是用我们尚未理解的语言写就的,即使是当今最强超算上运行的工具也不过触及皮毛。

如果人类能够阅读,甚至是书写「生命代码」,就能使生物学变得可编程。试错法将被逻辑取代,费力的实验将被模拟所取代。

ESM3就是朝这个宏伟愿景迈出的一步,是迄今为止首个能同时对蛋白质的序列、结构和功能进行推理的生成模型。

过去五年中LLM的突飞猛进,也让ESM团队发现了Scaling Law的威力,他们发现,同样的模式也适用于生物学。

随着训练数据以及参数规模的扩大,模型会加深对生物学基本原理的理解,并能更好地预测、设计生物结构和功能。

因此,ESM3的开发思路也与Scaling Law一脉相承,其规模比上一代ESM大大扩展,数据量提高了60倍,训练计算量提高了25倍,并且是具有原生多模态的生成模型。

ESM3的训练过程囊括了地球自然环境的多样性——数十亿种蛋白质,从亚马逊雨林到海洋深处,小到土壤中的微生物,极端到深海热泉。

HuggingFace上的模型卡显示,训练集中天然蛋白质数量达到27.8亿,并通过合成数据增强到31.5亿个序列、2.36个结构以及5.39亿个带有功能注释的蛋白质,token总数达到7710B。

模型训练参数总量达到98B,使用了超过1024 FLOPS的算力。团队似乎与英伟达紧密合作,训练使用了Andromeda集群,是当今吞吐量最高的GPU集群之一,部署了最先进的H100 GPU和Quantum-2 InfiniBand网络。

在这里插入图片描述

网页来源:https://andromeda.ai/
他们表示「相信ESM3的计算总量是有史以来生物模型之最」。

推理蛋白质的序列、结构和功能
处理文本的语言模型一般以token作为基本单位,但多模态的蛋白质模型更加复杂,需要将序列、三维结构和功能都转换为离散的字母进行表示。

为了更好地扩展训练规模、释放模型的「涌现」生成潜力,ESM3使用的词汇在同一语言模型中能够很好地连接序列、结构和功能,进行联合推理。

不同于GPT等语言模型,ESM3的训练目标继承于掩码语言模型(masked language modeling objective)。

每个蛋白质的序列、结构、和功能的部分位置会被掩码,模型在训练过程中需要逐渐理解三者之间的深层联系,从而预测掩码位置。如果遮蔽所有位置的标记,就相当于执行生成任务。

由于在蛋白质的序列、结构和功能上联合训练,对这三种模态可以任意进行掩码和预测,因此ESM3实现了「全对全」预测或生成(all to all)。

也就是说,模型的输入可以是部分或完全指定的三种模态的任意组合。这种强大的多模态推理能力有很强的应用价值,科学家们能以前所未有的灵活度和控制度设计全新的蛋白质。

比如,可以提示模型结合结构、序列和功能,提出PET酶活性位点的潜在支架结构。PET是一种常用的塑料,如果PET酶设计成功,就能用于高效分解塑料废物。

在这里插入图片描述

ESM3通过序列、结构和功能的多模态提示设计PET酶活性位点的支架

Evolutionary Scale的联合创始人兼兼工程副总裁Tom Sercu表示,在内部测试中,ESM在应对各种复杂提示时表现出了令人印象深刻的创造力。

「它能够解决一个极其困难的蛋白质设计问题,创造一种新型绿色荧光蛋白。ESM3能够帮助科学家加速工作,开辟新的可能性——我们期待看到它在未来对生命科学研究的贡献。」

当数十亿个蛋白质来自进化时间轴上的不同位置,具有丰富的多样性时,模型还能学到模拟进化的能力。

能力随规模涌现
正如LLM在规模扩展中「涌现」出了语言理解、推理等能力,在解决有挑战性的蛋白质设计任务时,ESM3也随规模增加逐渐显现能力,其中一个重要的能力就是原子级协调。

比如,提示中可能指定组成蛋白质的两个氨基酸需要在序列位置上相近,但在结构中相距较远。这衡量了模型在结构生成任务中达到原子级精度的能力。

这对于设计功能性蛋白质至关重要,而ESM3解决这类复杂生成任务的能力可以随着规模增加逐渐提高。

不仅如此,在训练完成后,ESM3的能力还有进一步提升的空间,其机制类似于LLM常用的RLHF方法。

但区别在于,ESM3并不是从人类那里接受反馈,而是可以评估自身的生成质量,进行自我改进,也可以结合已有的实验数据和湿实验结果,让ESM3的生成与生物学结果保持对齐。

在这里插入图片描述

模拟5亿年的进化

在发表的论文中,ESM3团队详细介绍了他们在模型上观察到的「模拟进化」功能。

论文地址:https://evolutionaryscale-public.s3.us-east-2.amazonaws.com/research/esm3.pdf

绿色荧光蛋白(Green Fluorescent Protein,GFP)及其荧光蛋白家族是自然界中最美丽的蛋白质之一,但它们只存在于「生命之树」的几个分支中。

但GFP不仅仅是美丽而已,它包含一种荧光发色团(fluorescent chromophore)。这种分子可以吸收短波长的单色光子、捕获部分能量,再释放出波长较长的另一种单色光子。比如,自然界存在的GFP可以吸收蓝光并发出绿光。

由于这种特性,GFP能够作为标记,帮助科学家在细胞内观察蛋白质,成为了生物学中最广泛使用的工具之一,GFP的发现也因此获得了诺贝尔奖。

GFP的功能如此独特且有用,结构也是非常罕见:由十一条链组成的桶状结构,中间穿过一条螺旋。折叠后进行自发反应,在蛋白质中心的分子会重新排列,产生荧光发色团。

这种机制是独一无二的。没有其他已知的蛋白质能够自发地从其自身结构中形成荧光发色团,这表明即使在自然界中,产生荧光也是相当罕见且困难的。

为了能在实验室有更广泛的应用,科学家们尝试添加突变或改变颜色,进行人工合成。最新的机器学习技术能够搜索到序列差异高达20%的变体,但功能性GFP的主要来源依旧是自然界而非蛋白质工程。

想在自然界中找到更多的变体也并不简单,因为新荧光蛋白的进化需要漫长的时间——GFP所属家族的历史相当久远,它们从祖先序列中分化出来的时间点能追溯到数亿年前。

这个棘手的问题或许能在ESM3这里得到解决。

将天然GFP核心结构中几个位点的信息作为提示,并使用CoT技巧,ESM3成功生成了新型GFP的候选者。

这种生成绝不可能是随机撞大运或者是全局搜索,因为可能的序列和结构的组合起来会达到天文数字——20229 x 4096229 ,比可见宇宙中所有的原子数加起来还要多。

在首次实验中,团队测试了ESM3生成的96个候选蛋白,其中出现了成功的发光样本,而且存在一种十分独特的结构,与自然界中任何蛋白质都相差甚远。

在另一组96个候选样本中,发现了几种亮度与天然GFP相似的蛋白质,其中一种亮度最高的蛋白质被命名为esmGFP,与最接近的天然荧光蛋白相比有96个突变(在229个氨基酸组成的序列中,有58%的相似部分)。

与自然进化不同,蛋白质语言模型并不在进化约束内明确工作。

但为了让ESM3解决其预测下一个掩码token的训练任务,模型必须学习进化如何在潜在蛋白质空间中演变。

从这个意义上说,ESM3生成与天然蛋白十分相似的esmGFP的过程,可以被视为一种进化模拟器。

对esmGFP进行传统的进化分析是自相矛盾的,因为它是在自然过程之外创造的,但仍可以从进化生物学的工具中获得洞见,了解一个蛋白质通过自然进化与其最近的序列邻居分化所需的时间。

因此,研究团队使用进化生物学的方法,把esmGFP当成自然界新发现的蛋白质进行分析。他们估计,esmGFP等效于进化模拟器执行的超过 5 亿年的自然进化。

在这里插入图片描述

开放模型

自成立以来,ESM项目(ESM project)一直致力于通过发布代码和模型来实现开放科学。目前仍能在GitHub和HuggingFace上找到团队在几年前发布的代码和模型权重。

仓库地址:https://huggingface.co/facebook/esm2_t36_3B_UR50D/tree/main
看到ESM模型在研究和工业领域的创造性和有影响力的应用,可谓是令人惊叹:

  • Hie等人使用ESM-1v和ESM-1b来进化抗体,改善了结合亲和力、热稳定性和病毒中和等治疗相关特性。
  • BioNTech和InstaDeep微调了一个ESM语言模型,用于检测COVID刺突蛋白中的变异,成功地在WHO指定之前标记了所有16种关注变异。
  • Brandes等人使用ESM-1b来预测突变的临床效果,目前这仍是完成该重要任务的最强方法。
  • Marsiglia等人使用ESM-1v来设计新的抗CRISPR蛋白变体,这些变体在保持目标编辑功能的同时,减少了对非目标副作用。
  • Shanker等人使用ESM-IF1引导多样蛋白的进化,包括实验室验证的对SARS-CoV-2高效抗体。
  • Yu等人微调了ESM-1b来预测酶的功能,包括稀有和研究不足的酶,并通过实验验证了预测结果。
  • Rosen等人使用ESM2嵌入来构建单细胞基础模型中的基因表示。
  • Høie等人微调了ESM-IF1在抗体结构上的表现,在CDR区域的序列恢复中达到了最先进的性能,设计出了高结合亲和力的抗体。
    而这些,只是建立在ESM平台上的惊人工作的一小部分!

如今,团队正式宣布,将发布一个ESM3 1.4B参数版本的权重和代码,以便科学家和开发人员能够基于ESM3的理念和架构进行构建。

参考资料:
https://blogs.nvidia.com/blog/evolutionaryscale-esm3-generative-ai-nim-bionemo-h100/

https://evolutionaryscale-public.s3.us-east-2.amazonaws.com/research/esm3.pdf

https://www.evolutionaryscale.ai/blog/esm3-release

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/368973.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unreal Engine@Jetson Orin Nano尚不支持

Unreal EngineJetson Orin Nano尚不支持 1. 源由2. Unreal Engine介绍3. 问题4. 编译方法5. 补充6. 其他 1. 源由 最近在看SC-Explorer方面的内容,在模拟方面采用了Unreal Engine。 本打算跑下模拟,因此打算在JetsonOrin的板子上试试看。 2. Unreal En…

opencv实现目标检测功能----20240704

早在 2017 年 8 月,OpenCV 3.3 正式发布,带来了高度改进的“深度神经网络”(dnn)模块。 该模块支持多种深度学习框架,包括 Caffe、TensorFlow 和 Torch/PyTorch。这次我们使用Opencv深度学习的功能实现目标检测的功能,模型选用MobileNetSSD_deploy.caffemodel。 模型加载…

mac视频压缩简单办法,mac如何把视频压缩到指定大小内存

在数字时代,视频已成为我们日常生活和工作的重要交流工具。然而,视频文件体积庞大,给存储和分享带来了不少困扰。本文将为你揭秘视频压缩的秘密,让你轻松减小视频文件体积,提升分享效率! 方法一下载文件压缩…

Python爬虫教程第0篇-写在前面

为什么写这个系列 最近开发了个Python爬虫的脚本,去抢一个名额,结果是程序失败了,中间有各种原因,终究还是准备不足的问题。我想失败的经验或许也可贵,便总结一下当初从0开始学Python,一步步去写Python脚本…

【SpringCloud】Ribbon源码解析

ribbon是一个负载均衡组件,它可以将请求分散到多个服务提供者实例中,提高系统的性能和可用性。本章分析ribbon是如何实现负载均衡的 1、LoadBalanced 消费者在引入ribbon组件后,给http客户端添加LoadBalanced注解就可以启用负载均衡功能。Lo…

Github 2024-07-01开源项目月报 Top15

根据Github Trendings的统计,本月(2024-07-01统计)共有15个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Python项目6JavaScript项目3C++项目2PHP项目1Blade项目1非开发语言项目1C#项目1Lua项目1Go项目1MDX项目1Jupyter Notebook项目1从零开始构建你喜…

Ubuntu 24.04-自动安装-Nvidia驱动

教程 但在安全启动模式下可能会报错。 先在Nvidia官网找到GPU对应的驱动版, 1. 在软件与更新中选择合适的驱动 2. ubuntu自动安装驱动 sudo ubuntu-drivers autoinstall显示驱动 ubuntu-drivers devices3. 安装你想要的驱动 sudo apt install nvidia-driver-ve…

99. 岛屿数量

题目描述:给定一个由 1(陆地)和 0(水)组成的矩阵,你需要计算岛屿的数量。岛屿由水平方向或垂直方向上相邻的陆地连接而成,并且四周都是水域。你可以假设矩阵外均被水包围。 输入描述&#xff1a…

@amap/amap-jsapi-loader实现高德地图嵌入React项目中,并且做到点击地图任意一处,获得它的经纬度

1.第一步要加入项目package.json中或者直接yarn install它都可以 想必大家应该都会 "amap/amap-jsapi-loader": "0.0.7"2.加入项目中 关于接口获取key的接口 大家改成自己对应的项目请求方法 import React, { PureComponent } from react; import { Input…

GEE计算遥感生态指数RSEI

目录 RESI湿度绿度热度干度源代码归一化函数代码解释整体的代码功能解释:导出RSEI计算结果参考文献RESI RSEI = f (Greenness,Wetness,Heat,Dryness)其遥感定义为: RSEI = f (VI,Wet,LST,SI)式中:Greenness 为绿度;Wetness 为湿度;Thermal为热度;Dryness 为干度;VI 为植被指数…

【CT】LeetCode手撕—4. 寻找两个正序数组的中位数

目录 题目1- 思路2- 实现⭐4. 寻找两个正序数组的中位数——题解思路 3- ACM 实现 题目 原题连接:4. 寻找两个正序数组的中位数 1- 思路 思路 将寻找中位数 ——> 寻找两个合并数组的第 K 大 (K代表中位数) 实现 ① 遍历两个数组 &am…

如何利用AI撰写短文案获客?分享6大平台和3大步骤!

从去年开始,很多大厂都在裁员,原因就是因为AI的火爆,替代了很多机械式的劳动力。以前很多人可以通过机械式的工作来摸鱼,现在AI完成的效率比人工的要高很多倍。 国内好用的AI平台非常多,有时候也可以使用几个AI平台结合…

如何提高内容生产效率

在当前数字化和信息爆炸的时代,内容生产的需求不断增加,如何提高内容生产效率成为企业面临的重要课题。本文将介绍一种有效的内容生产协同工具——【可瓜】,并详细探讨其在提高内容生产效率方面的优势和实际应用。 内容生产任务进度追踪 传统…

【BUUCTF-PWN】7-[第五空间2019 决赛]PWN5

参考:BUU pwn [第五空间2019 决赛]PWN5 //格式化字符串漏洞 - Nemuzuki - 博客园 (cnblogs.com) 格式化字符串漏洞原理详解_printf 任意内存读取-CSDN博客 32位小端排序,有栈溢出保护 运行效果: 查看main函数 存在格式化字符串漏洞 输…

基于iview.viewUI实现行合并(无限制/有限制合并)【已验证可正常运行】

1.基于iview.viewUI实现行合并(列之间没有所属对应关系,正常合并) 注:以下代码来自于GPT4o:国内直连GPT4o 只需要修改以下要合并的列字段,就可以方便使用啦 mergeFields: [majorNo, devNam, overhaulAdvic…

嵌入式Linux系统编程 — 6.7 实时信号

目录 1 什么是实时信号 2 sigqueue函数 3 sigpending()函数 1 什么是实时信号 等待信号集只是一个掩码,它并不追踪信号的发生次数。这意味着,如果相同的信号在被阻塞的状态下多次产生,它只会在信号集中被记录一次,并且在信号集…

SLAM 精度评估

SLAM 精度的评估有两个最重要的指标,即绝对轨迹误差(ATE)和相对位姿误差(RPE)的 均方根误差(RMSE): 绝对轨迹误差:直接计算相机位姿的真实值与 SLAM 系统的估计值之间的差值,首先将…

kubernetes service 服务

1 service作用 使用kubernetes集群运行工作负载时,由于Pod经常处于用后即焚状态,Pod经常被重新生成,因此Pod对应的IP地址也会经常变化,导致无法直接访问Pod提供的服务,Kubernetes中使用了Service来解决这一问题&#…

【Linux】多线程(互斥 同步)

我们在上一节多线程提到没有任何保护措施的抢票是会造成数据不一致的问题的。 那我们怎么办? 答案就是进行加锁。 目录 加锁:认识锁和接口:初始化:加锁 && 解锁:全局的方式:局部的方式&#xff1a…

【SkiaSharp绘图15】SKPath属性详解:边界、填充、凹凸、类型判断、坐标、路径类型

文章目录 SKPath 构造函数SKPath 属性Bounds 边界(宽边界)TightBounds紧边界FillType填充方式IsConcave 是否凹/ IsConvex 是否凸IsEmpty是否为空IsLine是否为线段IsRect是否为矩形IsOval是否为椭圆或圆IsRoundRect是否为圆角矩形Item[] 获取路径的坐标LastPoint最后点的坐标Po…