阶段总结——基于深度学习的三叶青图像识别

阶段总结——基于深度学习的三叶青图像识别

文章目录

  • 一、计算机视觉图像分类系统设计
  • 二、训练模型
    • 2.1. 构建数据集
    • 2.2. 网络模型选择
    • 2.3. 图像数据增强与调参
    • 2.4. 部署模型到web端
    • 2.5. 开发图像识别小程序
  • 三、实验结果
    • 3.1. 模型训练
    • 3.2. 模型部署
  • 四、讨论
  • 五、参考文献:

一、计算机视觉图像分类系统设计

三叶青图像识别研究简概

如图1所示,图像分类系统从输入图像开始,经过预处理,进行特征选择和提取,之后经过分类器进行分类,得出最后的预测结果,并输出。在获得训练样本之前,所有的图片都进行了预处理、归一化处理为固定分辨率的图片输入至网络中,然后对其进行特征选择和提取,进行训练得到分类器,从而达到预测目标的任务[1]。

在这里插入图片描述
图 1 图像分类系统图

二、训练模型

2.1. 构建数据集

考虑到最终是根据三叶青块根、叶片图片进行训练,并且是根据省份产地进行分类。故本实验的类别目前共有六种:云南省、广西省、未知、浙江省、贵州省、陕西省。其中未知类别的图片来自于从网络上爬取和本地相册中的图片;至于另外五种类别的图片则是自己构建的。获得图片数据集后,则是统一数据集图片的格式、大小。前面共采集了9214张图片,之后便是将数据集按照比例6:2:2分割为训练集、验证集、测试集。各类别图像数量的统计表格如表1所示。

在这里插入图片描述

表 1 各类别图像数量的统计

2.2. 网络模型选择

由于考虑到常规的CNN,推理需要很大的计算量,很难应用在移动端等资源受限的场景中。只有通过复杂的裁剪,量化才有可能勉强部署到移动端。本实验采用了MobileNetV3-Large模型,是谷歌提出的轻量化网络架构,引入MobileNetV1的深度可分离卷积、MobileNetV2的具有线性瓶颈的倒残差结构、加入神经网络架构搜索(NAS)和h-swish激活函数,并引入SE通道注意力机制,性能和速度都表现优异[2]。其网络模型结构如图2所示

在这里插入图片描述
图 2 MobileNetV3_Large模型架构

2.3. 图像数据增强与调参

在训练之前,先对训练集进行数据增强,通过随即裁剪、缩放图像、随机更改亮度、对比度和饱和度等方法对数据进行增强。之后使用迁移学习方法来训练模型,对MobileNetV3-Large模型进行微调,即改变模型的分类头,使输出大小与数据集的类别数相匹配,为6,故要将模型的最后一层1²×1280改为1²×6。
最后使用随机梯度下降(SGD)优化器,用于更新网络中的参数以最小化损失函数,使用网格搜索函数来搜索最佳超参数组合。

2.4. 部署模型到web端

使用flask+bootstrap+jquery+mysql搭建三叶青在线识别网站;最后使用nginx+gunicorn部署网站在腾讯云上,并配置SSL证书,方便后面微信小程序调用此网站的后端代码。
该网站实现了登录注册、在线识别、图片瀑布流展示、用户数据展示以及其它等功能。

2.5. 开发图像识别小程序

使用uniapp+微信开发者工具+flask后端开发三叶青图像识别微信小程序。此微信小程序主要分为三叶青图像识别功能、图片瀑布流展示、历史记录、登录/注册功能等。

三、实验结果

3.1. 模型训练

其中设置样本批量大小batch_size为128;类别数量num_classes为6;学习率lr为1e-4;权重衰减wd为1e-4;动量momentum为0.9;学习率衰减的周期lr_period为2;学习率衰减的比例lr_decay为1。训练时设置的训练总轮数num_epochs为300;在Epoch197时验证集的准确度最高。运行结果如图3

在这里插入图片描述
图 3 模型训练结果

最后,训练集的损失为0.070,训练集的准确度为0.977,验证集的准确度为0.967,测试集上的准确度为0.9718。其中top_n预测正确的概率为99.84%(即在预测得到的置信度排前三的类别中有正确类别的概率)。除了上述的损失、准确率和top-n准确率,还有许多其他的模型精度评估指标,例如分类报告、各类别准确率(如表2所示)、混淆矩阵、PR曲线、AUC-ROC曲线(如图4所示)。

在这里插入图片描述
表 2 分类报告与各类别准确率

在这里插入图片描述

图 4 混淆矩阵、PR曲线、ROC曲线

3.2. 模型部署

利用pytorch框架训练得到的.pth模型文件转换为onnx文件,并使用ONNX
Runtime来执行模型推理。在此基础上,我们开发了一个三叶青块根图像产地鉴别的在线识别网站(https://www.whtuu.cn),以及一个微信小程序(三叶识青),使得用户可以在各种设备和平台上方便地使用我们的模型进行预测。

四、讨论

本研究的图像分类任务采用了MobileNetV3-Large模型,通过对模型的微调训练、测试、验证工作,对于采集的多产地的三叶青块根图像完成了图像分类,达到了很高的识别准确率,并且识别速度快,模型部署在web端和移动端,操作方便。

但是在此次研究中也发现了一些问题,(1)若想要提高识别率,数据集的构建至关重要,提供的训练集一定要大量、各类别的样本量也要平均,差异不能过大;(2)要采集不同背景下的三叶青块根照片,这样虽然会让识别率降低,但是在实际应用中却是十分必要的;(3)图像数据增强和调参过程很重要,对于模型的精度的提升很大;(4)本研究初步计划同时根据三叶青的叶片照片进行产地分类。然而,由于时间限制,这部分功能未能实现。尽管如此,在web端和移动端仍保留了叶片分类的接口,以便于未来研究和开发。

五、参考文献:

[1] 刘加峰,高子啸,段元民,等. 基于深度学习的中药材饮片图像识别[J].北京生物医学工程,2021,40( 4) : 605-608.
[2] A. Howard et al., “Searching for MobileNetV3,” 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019, pp. 1314-1324, doi: 10.1109/ICCV.2019.00140.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/369934.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于springboot+vue+uniapp的电影交流平台小程序

开发语言:Java框架:springbootuniappJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包&#…

科普文:如何进行有效沟通

概叙 你会沟通吗? 你知道正确的沟通应该怎么做吗? 在日常生活和工作中,不会沟通带来的困扰是否让你感同身受? 在工作中,你是否因表达不清让观点无法被同事理解和采纳,影响职业发展? 与上级交流是…

蓝桥杯web组国三选手题纲解析和备赛技巧--经验分享

蓝桥杯web组赛题解析和杯赛技巧 **🎉🎉🎉欢迎来到我的博客,我是一名自学了2年半前端的大一学生,熟悉的技术是JavaScript与Vue.目前正在往全栈方向前进, 如果我的博客给您带来了帮助欢迎您关注我,我将会持续不断的更新文章!!!🙏&am…

C语言中32位浮点数的格式

以 GNU C为例,它遵循 IEEE 754-2008标准中制定的浮点表示规范。在该规范中定义了 5种不同大小的基础二进制浮点格式,包括:16位,32位,64位,128位,256位。其中,32位的格式被用作标准 C…

日期选取限制日期范围antdesign vue

限制选取的日期范围 效果图 <a-date-pickerv-model"dateTime"format"YYYY-MM-DD":disabled-date"disabledDate"valueFormat"YYYY-MM-DD"placeholder"请选择日期"allowClear />methods:{//回放日期选取范围限制&…

秋招Java后端开发冲刺——并发篇1(线程与进程、多线程)

一、进程 1. 进程 进程是程序的一次动态执行过程&#xff0c;是操作系统资源分配的基本单位。 2. 进程和线程的区别 特性进程线程定义独立运行的程序实例&#xff0c;资源分配的基本单位进程中的一个执行单元&#xff0c;CPU调度的基本单位资源进程拥有独立的内存空间和资源线…

磁力泵与屏蔽泵

1.磁力泵的工作原理 磁力传动是利用磁体能吸引铁磁物质以及磁体或磁场之间有磁力作用的特性&#xff0c;而非铁磁物质不影响或很少影响磁力的大小&#xff0c;因此可以无接触地透过非磁导体&#xff08;隔离套&#xff09;进行动力传输。磁力传动可分为同步或异步设计。 大多数…

苹果电脑清理app垃圾高效清理,无需专业知识

在我们的日常使用中&#xff0c;苹果电脑以其优雅的设计和强大的功能赢得了广泛的喜爱。然而&#xff0c;即便是最高效的设备&#xff0c;也无法免俗地积累各种不必要的文件和垃圾&#xff0c;特别是app垃圾。所以&#xff0c;苹果电脑清理app垃圾高效清理&#xff0c;对于大多…

Spring Boot集成olingo快速入门demo

1.什么是olingo&#xff1f; Apache Olingo 是个 Java 库&#xff0c;用来实现 Open Data Protocol (OData)。 Apache Olingo 包括服务客户端和 OData 服务器方面。 Open Data Protocol &#xff08;开放数据协议&#xff0c;OData&#xff09; 是用来查询和更新数据的一种W…

单调栈 求下一个更大数

题意&#xff1a; 现在给你n个数字: ,问从每个数字往后看&#xff0c;第一个比他大的数字的下标是多少。 题解&#xff1a; 使用一个单调递减栈即可。 #include<bits/stdc.h> using namespace std; const int N100005;int n,s[N],a[N],ans[N],top0;int main(){scan…

ASP.NET Web应用中的 Razor Pages/MVC/Web API/Blazor

如果希望使用ASP.NET Core创建新的 Web 应用程序&#xff0c;应该选择哪种方法&#xff1f;Razor Pages还是 MVC&#xff08;模型-视图-控制器&#xff09;&#xff0c;又或者使用Web API Vue/React/......。 每种方法都有各自的优点和缺点。 什么是 MVC&#xff1f; 大多数服…

高考志愿填报,选热门专业还是选自己喜欢的专业

对于每一个结束高考的学生来说&#xff0c;都要面临选专业这个严峻的挑战。选专业可以说是妥妥的大工程&#xff0c;因为这关系到接下来的几年要学什么内容&#xff0c;关键是未来的几十年要从事什么样的工作。 所以在谈及选专业这个问题的时候&#xff0c;每个人的内心都有些…

力扣(3200)- 三角形的最大高度

好方法&#xff1a; 垃圾方法&#xff1a;

Python酷库之旅-第三方库Pandas(005)

目录 一、用法精讲 7、pandas.read_clipboard函数 7-1、语法 7-2、参数 7-3、功能 7-4、返回值 7-5、说明 7-6、用法 7-6-1、代码示例 7-6-2、结果输出 8、pandas.DataFrame.to_clipboard函数 8-1、语法 8-2、参数 8-3、功能 8-4、返回值 8-5、说明 8-6、用法…

UCOS-III 任务同步机制-信号量

1. 信号量类型 1.1 二值信号量&#xff08;Binary Semaphores&#xff09; 二值信号量只有两个状态&#xff1a;可用&#xff08;1&#xff09;和不可用&#xff08;0&#xff09;。它主要用于任务之间的互斥访问或者事件通知。例如&#xff0c;当一个任务完成某个操作后&am…

pip install包出现哈希错误解决

如图&#xff0c;当遇到此类错误时&#xff0c;多半是连接不稳定导致的校验失败。我们可以在PC端&#xff0c;或Ubuntu通过浏览器下载.whl安装文件&#xff1a;直接复制报错信息中的网址到浏览器即可弹出下载窗口。

kafka的架构

一、架构图 Broker&#xff1a;一台 kafka 服务器就是一个 broker。一个kakfa集群由多个 broker 组成。一个 broker 可以容纳多个 topic。 Producer&#xff1a;消息生产者&#xff0c;就是向 kafka broker 发消息的客户端 Consumer&#xff1a;消息消费者&#xff0c;向 kaf…

Win11右键默认显示更多选项的方法

问题描述 win11系统默认右键菜单显示选项太少&#xff0c;每次需要点一下“显示更多选项”才能得到想要内容。比方说我用notepad打开一个文档&#xff0c;在win11上要先点一下"显示更多选项“&#xff0c;再选择用notepad打开&#xff0c;操作非常反人类。 Win11右键默…

小红书矩阵系统源码:赋能内容创作与电商营销的创新工具

在内容驱动的电商时代&#xff0c;小红书凭借其独特的社区氛围和用户基础&#xff0c;成为品牌营销和个人创作者不可忽视的平台。小红书矩阵系统源码&#xff0c;作为支撑这一平台的核心技术&#xff0c;提供了一系列的功能和优势&#xff0c;助力用户在小红书生态中实现更高效…

高考假期预习指南

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 目录 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌…