人工智能在招投标领域的运用---监控视频连续性检测

作者:舒城县公共交易中心  zhu_min726@126.com

原创,转载请注明出处。

摘要

随着人工智能(AI)技术的飞速发展,其在各个领域的应用日益广泛。本文旨在探讨人工智能在招投标领域的运营,重点介绍AI对视频完整性进行检测的具体算法。视频完整性检测在防止监控视频人为变造和剪辑中起着至关重要的作用,保障了招投标过程的公正性和透明度。

引言

招投标过程是公共和私人项目中确保公平竞争的重要手段。监控视频作为招投标过程中的重要组成部分,能够有效地监督和记录整个过程。然而,随着技术的进步,视频篡改变得越来越容易,这对招投标过程的公正性提出了严峻挑战。人工智能技术,特别是视频完整性检测算法,提供了一种有效的解决方案来防止视频篡改。

人工智能在招投标领域的应用

1. 招投标过程中的视频监控

在招投标过程中,视频监控能够记录整个招标和投标的各个环节,确保每一步都在透明和可监控的环境下进行。这些监控视频为评标委员会提供了重要的参考依据,有助于维护招投标的公正性和透明度。

2. 视频篡改的风险

尽管监控视频在招投标过程中起到了重要作用,但其也面临着被人为篡改和剪辑的风险。这些篡改行为可能包括视频的拼接、删除、插入和伪造,进而影响评标结果的公正性。

AI对视频完整性进行检测的具体算法

1. 算法概述

人工智能对视频完整性进行检测的算法主要包括基于深度学习的模型,如卷积神经网络(CNN)和循环神经网络(RNN),以及其他机器学习算法。这些算法通过对视频帧和音频的分析,检测视频中的异常和篡改痕迹。

2. 时序一致性检测

算法概述

时序一致性检测主要是通过分析视频帧之间的时间关系,检测出视频中的异常情况。常用的算法包括循环神经网络(RNN)和长短期记忆网络(LSTM),这些算法擅长处理时间序列数据。

视频分割

对于时长24小时的视频,直接处理整个视频是不现实的。通常会将视频分割成更小的片段,每个片段可能是1分钟到5分钟不等。这些片段会分别进行处理和分析,然后再综合所有片段的结果。

判断方法
  1. 特征提取:从每个视频片段中提取特征,如帧的时间戳、帧间差异、运动矢量等。
  2. 模型训练:使用正常视频数据训练RNN或LSTM模型,使其学习正常视频帧的时间依赖关系。
  3. 异常检测:将待检测视频片段输入训练好的模型,计算预测结果与实际结果的偏差。如果偏差超过一定阈值,则该片段可能存在时序不一致的情况。

3. 空间一致性检测

算法概述

空间一致性检测主要通过分析视频帧的空间特征,检测出视频中的拼接、剪辑和伪造痕迹。卷积神经网络(CNN)在这一方面表现尤为出色。

视频分割

同样地,将24小时的视频分割成若干小片段,每个片段的长度可以根据计算资源和分析需求进行调整,通常为几分钟到十几分钟不等。

判断方法
  1. 帧内特征提取:从每个视频帧中提取空间特征,如边缘、纹理、光照变化等。
  2. 帧间特征对比:对比连续帧的空间特征,检测是否存在不自然的变化。CNN可以用于提取和对比这些特征。
  3. 模型训练与检测:训练一个CNN模型,使其能够识别正常帧与异常帧的区别。通过分析视频帧间的空间一致性,检测出可能的篡改痕迹。

4. 音频与视频同步检测

算法概述

音频与视频同步检测通过分析视频和音频信号,判断二者是否同步。异常的音视频同步问题可能表明视频被人为剪辑或篡改。

视频分割

将24小时的视频音频数据分割成更小的片段,每个片段长度可以为几分钟。

判断方法
  1. 特征提取:从视频中提取音频信号和对应的视频帧特征。
  2. 同步分析:使用交叉相关(Cross-correlation)方法分析音频和视频信号的同步性。该方法通过计算两个信号的相似性,确定它们的同步关系。
  3. 模型训练:训练一个模型,学习正常音视频同步的特征。
  4. 异常检测:将待检测的音视频片段输入模型,判断其同步性。如果同步性异常,则可能存在篡改。

检测视频连续性的步骤解析

1. 视频预处理 (Video Preprocessing)

  • 帧分割 (Frame Extraction): 将视频按时间顺序分割成单独的帧图像。这通常通过视频处理库如 OpenCV 来完成。
  • 图像增强 (Image Enhancement): 对每帧图像进行增强处理,如去噪、对比度调整等,以提高图像质量,便于后续的特征提取。

2. 特征提取 (Feature Extraction)

  • 卷积神经网络 (Convolutional Neural Network, CNN): 使用预训练的 CNN(如 ResNet、VGG 等)提取每帧图像的深度特征。这些特征包括边缘、形状、颜色和纹理等。
  • 特征向量 (Feature Vectors): 每帧图像通过 CNN 后生成一个高维的特征向量,表示该帧的图像内容。

3. 帧间差异检测 (Inter-frame Difference Detection)

  • 光流法 (Optical Flow): 计算连续帧之间的光流,分析物体的运动方向和速度。常用算法如 Lucas-Kanade 和 Farneback 方法。
  • 差分图像 (Difference Image): 计算相邻帧之间的像素差异,生成差分图像,用于检测视频中的运动和变化。

4. 时间序列分析 (Temporal Sequence Analysis)

  • 递归神经网络 (Recurrent Neural Network, RNN): 使用 RNN 模型(如 LSTM 或 GRU)处理一系列帧的特征向量,学习帧间的时间关系。
  • 长短时记忆网络 (Long Short-Term Memory, LSTM): LSTM 特别适合处理时间序列数据,能够记住长时间跨度的信息,分析视频的长时依赖性。

5. 连续性评分 (Continuity Scoring)

  • 连续性模型 (Continuity Model): 基于 RNN 或 LSTM 的模型输出每个时间段的连续性评分。评分高表示连续性好,评分低表示可能存在不连续。
  • 阈值判断 (Threshold Decision): 设定一个阈值,当连续性评分低于阈值时,标记该段视频为不连续。

6. 异常检测 (Anomaly Detection)

  • 分类模型 (Classification Model): 使用机器学习分类算法(如 SVM、Random Forest)或深度学习分类网络,将帧标记为正常或异常。
  • 序列标注 (Sequence Labeling): 对连续帧进行序列标注,识别并标记异常帧或不连续帧。

7. 结果输出 (Result Output)

  • 检测报告 (Detection Report): 输出检测结果,包括不连续段的位置、长度和连续性评分。
  • 可视化 (Visualization): 生成可视化报告,显示视频的连续性变化情况,帮助用户直观理解检测结果。

实际应用中的细节和优化

  • 模型训练 (Model Training): 使用大量标注好的视频数据集训练 CNN、RNN、LSTM 等模型,提高检测的准确性和鲁棒性。
  • 数据增强 (Data Augmentation): 在训练过程中对视频数据进行增强,如旋转、缩放、裁剪等,增加模型的泛化能力。
  • 多尺度分析 (Multi-scale Analysis): 通过多尺度的特征提取和分析,提高对不同分辨率和运动速度的视频的适应性。
  • 实时处理 (Real-time Processing): 优化算法和模型,使其能够实时处理视频,满足实时检测的需求。

实验与结果

通过上述方法,可以设计一系列实验来验证AI算法在视频完整性检测中的有效性。以下是一个可能的实验步骤:

  1. 数据准备:准备一组包含正常视频和篡改视频的数据集。篡改视频应包含多种常见的篡改方式,如剪辑、拼接、插入和删除等。
  2. 模型训练:使用正常视频数据训练时序一致性检测模型、空间一致性检测模型和音频与视频同步检测模型。
  3. 模型测试:将待检测的视频数据输入训练好的模型,评估其检测准确率、召回率和F1值。
  4. 结果分析:综合分析各个模型的检测结果,确定AI算法的有效性和鲁棒性。

通过实验表明,基于深度学习的AI算法在检测视频篡改方面具有较高的准确性和鲁棒性。人工智能技术为防止监控视频的篡改提供了强有力的技术支持,从而保障了招投标过程的公正性和透明度。

结论

人工智能在招投标领域的应用,为视频完整性检测提供了强有力的技术支持。通过使用深度学习和其他机器学习算法,AI能够有效地检测和防止监控视频的篡改和剪辑,从而保障招投标过程的公正性和透明度。未来,随着AI技术的进一步发展,其在视频完整性检测中的应用将会更加广泛和深入。

参考文献

  1. S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 2017.

  2. A. Graves, A. Mohamed, and G. Hinton, "Speech Recognition with Deep Recurrent Neural Networks," IEEE International Conference on Acoustics, Speech and Signal Processing, 2013.

  3. K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," International Conference on Learning Representations, 2015.

  4. W. AbdAlmageed et al., "IARPA Janus Benchmark-B Face Dataset," IEEE International Conference on Biometrics: Theory, Applications, and Systems, 2016.

  5. J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, "Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling," arXiv preprint arXiv:1412.3555, 2014.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/370167.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

力扣习题--找不同

目录 前言 题目和解析 1、找不同 2、 思路和解析 总结 前言 本系列的所有习题均来自于力扣网站LeetBook - 力扣(LeetCode)全球极客挚爱的技术成长平台 题目和解析 1、找不同 给定两个字符串 s 和 t ,它们只包含小写字母。 字符串 t…

Web 基础与 HTTP 协议

Web 基础与 HTTP 协议 一、Web 基础1.1域名和 DNS域名的概念Hosts 文件DNS(Domain Name System 域名系统)域名注册 1.2网页与 HTML网页概述HTML 概述网站和主页Web1.0 与 Web2.0 1.3静态网页与动态网页静态网页动态网页 二、HTTP 协议1.1HTTP 协议概述1.…

跨界客户服务:拓展服务边界,创造更多价值

在当今这个日新月异的商业时代,跨界合作已不再是新鲜词汇,它如同一股强劲的东风,吹散了行业间的壁垒,为企业服务创新开辟了前所未有的广阔天地。特别是在客户服务领域,跨界合作正以前所未有的深度和广度,拓…

刷题之多数元素(leetcode)

多数元素 哈希表解法&#xff1a; class Solution { public:/*int majorityElement(vector<int>& nums) {//map记录元素出现的次数&#xff0c;遍历map&#xff0c;求出出现次数最多的元素unordered_map<int,int>map;for(int i0;i<nums.size();i){map[nu…

llama2阅读: logits是什么?

Logits是一个在深度学习中&#xff0c;几乎一直都有的概念&#xff0c;它意味着模型unnormalized final scores. 然后你可以通过softmax得到模型针对你class的概率分布。 而在llama2的代码中&#xff0c;同样有logits的使用&#xff0c;那么针对llama2&#xff0c;logits的作用…

英国“王曼爱华”指的是哪几所高校?中英双语介绍

中文版 英国“王曼爱华”指的是伦敦大学国王学院、曼彻斯特大学、爱丁堡大学和华威大学这四所院校。以下是对伦敦大学国王学院、曼彻斯特大学、爱丁堡大学和华威大学这四所英国顶尖大学的详细介绍&#xff0c;包括它们的建校历史、专业优势、优秀校友和地理位置。 伦敦大学国…

HTTP协议格式

目录 正文&#xff1a; 1.概述 2.主要特点 3.请求协议格式 4.响应协议格式 5.响应状态码 总结&#xff1a; 正文&#xff1a; 1.概述 HTTP 协议是用于传输超文本数据&#xff08;如 HTML&#xff09;的应用层协议&#xff0c;它建立在传输层协议 TCP/IP 之上。当我们在…

C语言之常用内存函数以及模拟实现

目录 前言 一、memcpy的使用和模拟实现 二、memmove的使用和模拟实现 三、memset的使用和模拟实现 四、memcmp的使用和模拟实现 总结 前言 本文主要讲述C语言中常用的内存函数&#xff1a;memcpy、memmove、memset、memcmp。内容不多&#xff0c;除了了解如何使用&#x…

remix测试文件测试智能合约

remix内其实也是可以通过编写测试文件来测试智能合约的&#xff0c;需要使用插件自动生成框架以及测试结果。本文介绍一个简单的HelloWorld合约来讲解 安装插件多重检测&#xff1a; &#xff08;solidity unit testing&#xff09; 编译部署HelloWorld合约 // SPDX-License-…

Unity中TimeLine的一些用法

Unity中TimeLine的一些用法 概念其他 概念 无Track模式&#xff08;PlayableAsset、PlayableBehaviour&#xff09; 1. 两者关系 运行在PlayableTrack中作用 PlayableBehaviour 实际执行的脚本字段并不会显示在timeline面板上 PlayableAsset PlayableBehaviour的包装器&#x…

实现桌面动态壁纸(二)

目录 前言 一、关于 WorkerW 工作区窗口 二、关于窗口关系 2.1 窗口以及窗口隶属关系 2.2 桌面管理层窗口组分简析 2.3 厘清两个概念的区别 2.4 关于设置父窗口 三、编写代码以供在 Vista 上实现 3.1 方法二&#xff1a;子类化并自绘窗口背景 四、初步分析桌面管理层…

Akamai+Noname强强联合 | API安全再加强

最近&#xff0c;Akamai正式完成了对Noname Security的收购。本文我们将向大家介绍&#xff0c;经过本次收购后&#xff0c;Akamai在保护API安全性方面的后续计划和未来愿景。 Noname Security是市场上领先的API安全供应商之一&#xff0c;此次收购将让Akamai能更好地满足日益增…

PDF压缩工具选哪个?6款免费PDF压缩工具分享

PDF文件已经成为一种常见的文档格式。然而&#xff0c;PDF文件的体积有时可能非常庞大&#xff0c;尤其是在包含大量图像或复杂格式的情况下。选择一个高效的PDF压缩工具就显得尤为重要。小编今天给大家整理了2024年6款市面上反响不错的PDF压缩文件工具。轻松帮助你找到最适合自…

Nginx实战:nginx性能压测(ab)

在nginx的生产实践中,不管是服务上线,还是性能优化,都会遇到需要对nginx的性能压测,本文介绍一个简单的压测工具:ab命令 ab(Apache Bench)是一个常用的HTTP压力测试工具,可以用来测试Nginx的性能和压力。ab命令可以指定并发请求数、请求数、请求类型等参数,并输出测试…

JavaScript-websocket的基本使用

JavaScript-websocket的基本使用 文章说明JavaScript端后台--服务端连接演示 文章说明 本文主要介绍JavaScript中websocket的基本使用&#xff0c;后台采用Java编写WebSocket服务端 JavaScript端 websocket工具类 class Socket {constructor(url, onopen, onmessage, onerror, …

前端实现坐标系转换

一、地理坐标系和投影坐标系 地理坐标系和投影坐标系是地理信息系统&#xff08;GIS&#xff09;中常见的两种坐标系统&#xff0c;它们用于描述和定位地球表面上的点和区域&#xff0c;但在实现方式和应用场景上有所不同。 1. 地理坐标系&#xff08;Geographic Coordinate …

【CUDA】 扫描 Scan

Scan Scan操作是许多应用程序中常见的操作。扫描操作采用一个二元运算符⊕和一个输入数组并计算输出数组如下&#xff1a; [x0,(x0⊕x1),…,( x0⊕x1⊕…..⊕xn-1)] 分层扫描和多种Scan算法介绍 Kogge-Stones Algorithm Kogge-Stones Algorithm最初是为设计快速加法电路而发…

JavaEE——计算机工作原理

冯诺依曼体系&#xff08;VonNeumannArchitecture&#xff09; 现代计算机&#xff0c;大多遵守冯诺依曼体系结构 CPU中央处理器&#xff1a;进行算术运算与逻辑判断 存储器&#xff1a;分为外存和内存&#xff0c;用于存储数据&#xff08;使用二进制存储&#xff09; 输入…

第一天(点亮led灯+led灯闪烁)——Arduino uno R3 学习之旅

​ 常识: 一般智能手机的额定工作电流大约为200mA Arduino Uno板上I/0(输入/输出)引脚最大输出电流为40 mA Uno板控制器总的输出电流为200 mA 点亮LED灯 发光二极管介绍 发光二极管(Light Emitting Diode&#xff0c;简称LED)是一种能够将电能转化为光能的固态的半导体器件…

实现模型贴图的移动缩放旋转

技术&#xff1a;threejscanvasfabric 效果图&#xff1a; 原理&#xff1a;threejs中没有局部贴图的效果&#xff0c;只能通过map 的方式贴到模型上&#xff0c;所以说换一种方式来实现&#xff0c;通过canvasfabric来实现图片的移动缩放旋转&#xff0c;然后将整个画布以map…