昇思MindSpore学习总结十二 —— ShuffleNet图像分类

当前案例不支持在GPU设备上静态图模式运行,其他模式运行皆支持。

1、ShuffleNet网络介绍

        ShuffleNetV1是旷视科技提出的一种计算高效的CNN模型,和MobileNet, SqueezeNet等一样主要应用在移动端,所以模型的设计目标就是利用有限的计算资源来达到最好的模型精度。ShuffleNetV1的设计核心是引入了两种操作:Pointwise Group Convolution和Channel Shuffle,这在保持精度的同时大大降低了模型的计算量。因此,ShuffleNetV1和MobileNet类似,都是通过设计更高效的网络结构来实现模型的压缩和加速。

        了解ShuffleNet更多详细内容,详见论文ShuffleNet。

如下图所示,ShuffleNet在保持不低的准确率的前提下,将参数量几乎降低到了最小,因此其运算速度较快,单位参数量对模型准确率的贡献非常高。

图片来源:Bianco S, Cadene R, Celona L, et al. Benchmark analysis of representative deep neural network architectures[J]. IEEE access, 2018, 6: 64270-64277.

1.1 模型架构

        ShuffleNet最显著的特点在于对不同通道进行重排来解决Group Convolution带来的弊端。通过对ResNet的Bottleneck单元进行改进,在较小的计算量的情况下达到了较高的准确率。

Pointwise Group Convolution

Group Convolution(分组卷积)原理如下图所示,相比于普通的卷积操作,分组卷积的情况下,每一组的卷积核大小为in_channels/g*k*k,一共有g组,所有组共有(in_channels/g*k*k)*out_channels个参数,是正常卷积参数的1/g。分组卷积中,每个卷积核只处理输入特征图的一部分通道,其优点在于参数量会有所降低,但输出通道数仍等于卷积核的数量

 图片来源:Huang G, Liu S, Van der Maaten L, et al. Condensenet: An efficient densenet using learned group convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 2752-2761.

Depthwise Convolution(深度可分离卷积)将组数g分为和输入通道相等的in_channels,然后对每一个in_channels做卷积操作,每个卷积核只处理一个通道,记卷积核大小为1*k*k,则卷积核参数量为:in_channels*k*k,得到的feature maps通道数与输入通道数相等

Pointwise Group Convolution(逐点分组卷积)在分组卷积的基础上,令每一组的卷积核大小为 1×11×1,卷积核参数量为(in_channels/g*1*1)*out_channels。

from mindspore import nn
import mindspore.ops as ops
from mindspore import Tensorclass GroupConv(nn.Cell):#定义类的初始化方法(构造函数),接收以下参数:in_channels:输入通道数;out_channels:输出通道数;kernel_size:卷积核的大小#stride:卷积的步长;pad_mode:填充模式,默认是 "pad";pad:填充大小,默认是0;groups:分组数,默认是1;has_bias:是否有偏置,默认是Falsedef __init__(self, in_channels, out_channels, kernel_size,stride, pad_mode="pad", pad=0, groups=1, has_bias=False):super(GroupConv, self).__init__()#调用父类 nn.Cell 的初始化方法self.groups = groups#将分组数 groups 保存为类的实例变量self.convs = nn.CellList()#创建一个 nn.CellList 实例 self.convs,用于存储多个卷积层。for _ in range(groups):#遍历每一个分组#每次遍历中,向 self.convs 添加一个新的卷积层,该卷积层具有以下特点:#输入通道数和输出通道数分别是 in_channels // groups 和 out_channels // groups(即每组处理的通道数)。# 其他参数如 kernel_size, stride, has_bias, padding, pad_mode 和 weight_init 使用传入的参数值。self.convs.append(nn.Conv2d(in_channels // groups, out_channels // groups,kernel_size=kernel_size, stride=stride, has_bias=has_bias,padding=pad, pad_mode=pad_mode, group=1, weight_init='xavier_uniform'))def construct(self, x):#定义 construct 方法,用于执行分组卷积操作。接收输入 x。# 使用 ops.split 将输入 x 按照通道维度分割成多个部分,每个部分的大小为 len(x[0]) // self.groups。features = ops.split(x, split_size_or_sections=int(len(x[0]) // self.groups), axis=1)outputs = ()for i in range(self.groups):# 对每个分组,使用相应的卷积层处理分割后的输入部分,并将结果添加到 outputs 元组中。将输入部分转换为 float32 类型。outputs = outputs + (self.convs[i](features[i].astype("float32")),)#使用 ops.cat 将所有分组的卷积输出在通道维度上拼接在一起,得到最终输出 out。out = ops.cat(outputs, axis=1)return out

1.2 Channel Shuffle

        Group Convolution的弊端在于不同组别的通道无法进行信息交流,堆积GConv层后一个问题是不同组之间的特征图是不通信的,这就好像分成了g个互不相干的道路,每一个人各走各的,这可能会降低网络的特征提取能力。这也是Xception,MobileNet等网络采用密集的1x1卷积(Dense Pointwise Convolution)的原因。

        为了解决不同组别通道“近亲繁殖”的问题,ShuffleNet优化了大量密集的1x1卷积(在使用的情况下计算量占用率达到了惊人的93.4%),引入Channel Shuffle机制(通道重排)。这项操作直观上表现为将不同分组通道均匀分散重组,使网络在下一层能处理不同组别通道的信息。

 如下图所示,对于g组,每组有n个通道的特征图,首先reshape成g行n列的矩阵,再将矩阵转置成n行g列,最后进行flatten操作,得到新的排列。这些操作都是可微分可导的且计算简单,在解决了信息交互的同时符合了ShuffleNet轻量级网络设计的轻量特征。

 1.3 ShffleNet模块

如下图所示,ShuffleNet对ResNet中的Bottleneck结构进行由(a)到(b), (c)的更改:

  1. 将开始和最后的1×11×1卷积模块(降维、升维)改成Point Wise Group Convolution;

  2. 为了进行不同通道的信息交流,再降维之后进行Channel Shuffle;

  3. 降采样模块中,3×33×3 Depth Wise Convolution的步长设置为2,长宽降为原来的一般,因此shortcut中采用步长为2的3×33×3平均池化,并把相加改成拼接。

class ShuffleV1Block(nn.Cell):# ShuffleV1Block 类的构造函数,接收以下参数:# first_group: 是否在第一个卷积层使用分组卷积;mid_channels: 中间通道数;ksize: 卷积核大小;stride: 步长def __init__(self, inp, oup, group, first_group, mid_channels, ksize, stride):super(ShuffleV1Block, self).__init__()self.stride = stride#步长 stride 保存为类的实例变量。pad = ksize // 2self.group = group# 根据步长 stride 的值决定 outputs,如果步长为2,输出通道数为 oup - inp,否则为 oup。if stride == 2:outputs = oup - inpelse:outputs = oupself.relu = nn.ReLU()# 定义第一个主分支 branch_main_1,包含以下层:# 分组卷积层,输入通道为 inp,输出通道为 mid_channels,卷积核大小为1,步长为1,填充为0。是否使用分组卷积取决于 first_group。# 批归一化层,处理 mid_channels。# ReLU激活函数。branch_main_1 = [GroupConv(in_channels=inp, out_channels=mid_channels,kernel_size=1, stride=1, pad_mode="pad", pad=0,groups=1 if first_group else group),nn.BatchNorm2d(mid_channels),nn.ReLU(),]# 定义第二个主分支 branch_main_2,包含以下层:# 卷积层,输入和输出通道均为 mid_channels,卷积核大小为 ksize,步长为 stride,填充为 pad,分组数为 mid_channels,使用 Xavier 权重初始化,不带偏置。# 批归一化层,处理 mid_channels。# 分组卷积层,输入通道为 mid_channels,输出通道为 outputs,卷积核大小为1,步长为1,填充为0。# 批归一化层,处理 outputs。branch_main_2 = [nn.Conv2d(mid_channels, mid_channels, kernel_size=ksize, stride=stride,pad_mode='pad', padding=pad, group=mid_channels,weight_init='xavier_uniform', has_bias=False),nn.BatchNorm2d(mid_channels),GroupConv(in_channels=mid_channels, out_channels=outputs,kernel_size=1, stride=1, pad_mode="pad", pad=0,groups=group),nn.BatchNorm2d(outputs),]# branch_main_1 和 branch_main_2 转换为 nn.SequentialCell,便于按顺序执行各层。self.branch_main_1 = nn.SequentialCell(branch_main_1)self.branch_main_2 = nn.SequentialCell(branch_main_2)# 如果步长为2,定义一个平均池化层 branch_proj,卷积核大小为3,步长为2,填充模式为 'same'。if stride == 2:self.branch_proj = nn.AvgPool2d(kernel_size=3, stride=2, pad_mode='same')# 定义 construct 方法,接收输入 old_x。将 old_x 分别赋值给 left 和 right 变量,初始化输出 out。def construct(self, old_x):left = old_xright = old_xout = old_x# 将 right 通过第一个主分支 branch_main_1。right = self.branch_main_1(right)# 如果分组数大于1,对 right 进行通道洗牌操作。if self.group > 1:right = self.channel_shuffle(right)# 将 right 通过第二个主分支 branch_main_2。right = self.branch_main_2(right)# 如果步长为1,将 left 和 right 相加,通过 ReLU 激活函数得到最终输出 out。if self.stride == 1:out = self.relu(left + right)# 如果步长为2,将 left 通过平均池化层 branch_proj,然后将 left 和 right 在通道维度上拼接,通过 ReLU 激活函数得到最终输出 out。elif self.stride == 2:left = self.branch_proj(left)out = ops.cat((left, right), 1)out = self.relu(out)return out# 定义 channel_shuffle 方法,实现通道洗牌操作:
# 获取输入 x 的形状,分别为 batchsize、num_channels、height 和 width。
# 计算每个分组的通道数 group_channels。
# 将 x 重新调整形状为 (batchsize, group_channels, self.group, height, width)。
# 对 x 进行维度交换,使得分组维度排在前面。
# 将 x 重新调整回原始形状 (batchsize, num_channels, height, width)。
# 返回洗牌后的 x。def channel_shuffle(self, x):batchsize, num_channels, height, width = ops.shape(x)group_channels = num_channels // self.groupx = ops.reshape(x, (batchsize, group_channels, self.group, height, width))x = ops.transpose(x, (0, 2, 1, 3, 4))x = ops.reshape(x, (batchsize, num_channels, height, width))return x

 2、构建ShuffleNet网络

        ShuffleNet网络结构如下图所示,以输入图像224×224,组数3(g = 3)为例,首先通过数量24,卷积核大小为3×3,stride为2的卷积层,输出特征图大小为112×112,channel为24;然后通过stride为2的最大池化层,输出特征图大小为56×56,channel数不变;再堆叠3个ShuffleNet模块(Stage2, Stage3, Stage4),三个模块分别重复4次、8次、4次,其中每个模块开始先经过一次下采样模块(上图(c)),使特征图长宽减半,channel翻倍(Stage2的下采样模块除外,将channel数从24变为240);随后经过全局平均池化,输出大小为1×1×960,再经过全连接层和softmax,得到分类概率。

class ShuffleNetV1(nn.Cell):# 定义类的初始化方法(构造函数),接收以下参数:# n_class:分类的类别数,默认是1000。# model_size:模型大小,默认是 '2.0x'。# group:分组数,默认是3。# 调用父类 nn.Cell 的初始化方法,并打印模型大小。def __init__(self, n_class=1000, model_size='2.0x', group=3):super(ShuffleNetV1, self).__init__()print('model size is ', model_size)# 定义每个阶段的重复次数,分别是4、8、4。self.stage_repeats = [4, 8, 4]# 将模型大小 model_size 保存为类的实例变量。self.model_size = model_size# 根据 group 和 model_size 的值,设置 self.stage_out_channels,这是每个阶段的输出通道数。每种 model_size 对应不同的通道配置。if group == 3:if model_size == '0.5x':self.stage_out_channels = [-1, 12, 120, 240, 480]elif model_size == '1.0x':self.stage_out_channels = [-1, 24, 240, 480, 960]elif model_size == '1.5x':self.stage_out_channels = [-1, 24, 360, 720, 1440]elif model_size == '2.0x':self.stage_out_channels = [-1, 48, 480, 960, 1920]else:raise NotImplementedErrorelif group == 8:if model_size == '0.5x':self.stage_out_channels = [-1, 16, 192, 384, 768]elif model_size == '1.0x':self.stage_out_channels = [-1, 24, 384, 768, 1536]elif model_size == '1.5x':self.stage_out_channels = [-1, 24, 576, 1152, 2304]elif model_size == '2.0x':self.stage_out_channels = [-1, 48, 768, 1536, 3072]else:raise NotImplementedError# 设置第一个卷积层的输入通道数。input_channel = self.stage_out_channels[1]# 定义第一个卷积层,包括:# 卷积层:输入通道数为3(RGB图像),输出通道数为 input_channel,卷积核大小为3,步长为2,填充为1,使用 Xavier 权重初始化,不带偏置。# 批归一化层:处理 input_channel。# ReLU激活函数。self.first_conv = nn.SequentialCell(nn.Conv2d(3, input_channel, 3, 2, 'pad', 1, weight_init='xavier_uniform', has_bias=False),nn.BatchNorm2d(input_channel),nn.ReLU(),)# 定义一个最大池化层,卷积核大小为3,步长为2,填充模式为 'same'。self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')# 定义特征提取部分。遍历每个阶段,根据 self.stage_repeats 添加多个 ShuffleV1Block:# stride:如果是每个阶段的第一个块,步长为2,否则为1。# first_group:如果是第一个阶段的第一个块,设置 first_group 为True。# 将 ShuffleV1Block 添加到 features 列表中,并更新 input_channel 为 output_channel。features = []for idxstage in range(len(self.stage_repeats)):numrepeat = self.stage_repeats[idxstage]output_channel = self.stage_out_channels[idxstage + 2]for i in range(numrepeat):stride = 2 if i == 0 else 1first_group = idxstage == 0 and i == 0features.append(ShuffleV1Block(input_channel, output_channel,group=group, first_group=first_group,mid_channels=output_channel // 4, ksize=3, stride=stride))input_channel = output_channel# 将 features 列表转换为 nn.SequentialCell,便于按顺序执行各层。self.features = nn.SequentialCell(features)# 定义一个全局平均池化层,池化窗口大小为7。self.globalpool = nn.AvgPool2d(7)self.classifier = nn.Dense(self.stage_out_channels[-1], n_class)
# 定义 construct 方法,前向传播过程:
# 输入 x 通过第一个卷积层 self.first_conv。
# 通过最大池化层 self.maxpool。
# 通过特征提取部分 self.features。
# 通过全局平均池化层 self.globalpool。
# 将池化后的输出调整形状为二维,通道数为 self.stage_out_channels[-1]。
# 通过全连接层 self.classifier,得到最终的分类结果。
# 返回分类结果 x。def construct(self, x):x = self.first_conv(x)x = self.maxpool(x)x = self.features(x)x = self.globalpool(x)x = ops.reshape(x, (-1, self.stage_out_channels[-1]))x = self.classifier(x)return x

 3、模型训练和评估

采用CIFAR-10数据集对ShuffleNet进行预训练。

3.1 训练集准备与加载

        采用CIFAR-10数据集对ShuffleNet进行预训练。CIFAR-10共有60000张32*32的彩色图像,均匀地分为10个类别,其中50000张图片作为训练集,10000图片作为测试集。如下示例使用mindspore.dataset.Cifar10Dataset接口下载并加载CIFAR-10的训练集。目前仅支持二进制版本(CIFAR-10 binary version)。

from download import downloadurl = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/cifar-10-binary.tar.gz"download(url, "./dataset", kind="tar.gz", replace=True)

import mindspore as ms
from mindspore.dataset import Cifar10Dataset
from mindspore.dataset import vision, transforms# 定义一个名为 get_dataset 的函数,接收三个参数:
# train_dataset_path: 训练数据集的路径
# batch_size: 每个批次的样本数量
# usage: 数据集的用途(例如 "train" 或 "test")
def get_dataset(train_dataset_path, batch_size, usage):# 初始化一个空的 image_trans 列表。如果 usage 为 "train",则添加一系列数据增强和变换操作到 image_trans 列表中:# 随机裁剪到 32x32,边距为 4 像素# 随机水平翻转,概率为 0.5# 调整图像大小到 224x224# 像素值缩放到 [0, 1] 范围# 使用均值和标准差进行归一化# 将图像从 HWC 格式转换为 CHW 格式image_trans = []if usage == "train":image_trans = [vision.RandomCrop((32, 32), (4, 4, 4, 4)),vision.RandomHorizontalFlip(prob=0.5),vision.Resize((224, 224)),vision.Rescale(1.0 / 255.0, 0.0),vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),vision.HWC2CHW()]# 如果 usage 为 "test",则添加一系列数据变换操作到 image_trans 列表中(没有数据增强操作):# 调整图像大小到 224x224# 像素值缩放到 [0, 1] 范围# 使用均值和标准差进行归一化# 将图像从 HWC 格式转换为 CHW 格式elif usage == "test":image_trans = [vision.Resize((224, 224)),vision.Rescale(1.0 / 255.0, 0.0),vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),vision.HWC2CHW()]# 定义标签变换操作,将标签转换为 ms.int32 类型。label_trans = transforms.TypeCast(ms.int32)# 加载CIFAR-10数据集,指定数据集路径和用途,并启用随机打乱。dataset = Cifar10Dataset(train_dataset_path, usage=usage, shuffle=True)# 对数据集应用变换操作:dataset = dataset.map(image_trans, 'image')dataset = dataset.map(label_trans, 'label')# 将数据集分批次处理,每个批次包含 batch_size 个样本。如果最后一个批次样本数量不足,则丢弃该批次。dataset = dataset.batch(batch_size, drop_remainder=True)return dataset
# 调用 get_dataset 函数,加载训练数据集,路径为 ./dataset/cifar-10-batches-bin,每个批次包含 128 个样本。
dataset = get_dataset("./dataset/cifar-10-batches-bin", 128, "train")
# 获取每个epoch的批次数,并将其赋值给 batches_per_epoch 变量。
batches_per_epoch = dataset.get_dataset_size()

3.2 模型训练

        本节用随机初始化的参数做预训练。首先调用ShuffleNetV1定义网络,参数量选择"2.0x",并定义损失函数为交叉熵损失,学习率经过4轮的warmup后采用余弦退火,优化器采用Momentum。最后用train.model中的Model接口将模型、损失函数、优化器封装在model中,并用model.train()对网络进行训练。将ModelCheckpointCheckpointConfigTimeMonitorLossMonitor传入回调函数中,将会打印训练的轮数、损失和时间,并将ckpt文件保存在当前目录下。

import mindspore as ms
from mindspore.dataset import Cifar10Dataset
from mindspore.dataset import vision, transforms# 定义一个名为 get_dataset 的函数,接收三个参数:
# train_dataset_path: 训练数据集的路径
# batch_size: 每个批次的样本数量
# usage: 数据集的用途(例如 "train" 或 "test")
def get_dataset(train_dataset_path, batch_size, usage):# 初始化一个空的 image_trans 列表。如果 usage 为 "train",则添加一系列数据增强和变换操作到 image_trans 列表中:# 随机裁剪到 32x32,边距为 4 像素# 随机水平翻转,概率为 0.5# 调整图像大小到 224x224# 像素值缩放到 [0, 1] 范围# 使用均值和标准差进行归一化# 将图像从 HWC 格式转换为 CHW 格式image_trans = []if usage == "train":image_trans = [vision.RandomCrop((32, 32), (4, 4, 4, 4)),vision.RandomHorizontalFlip(prob=0.5),vision.Resize((224, 224)),vision.Rescale(1.0 / 255.0, 0.0),vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),vision.HWC2CHW()]# 如果 usage 为 "test",则添加一系列数据变换操作到 image_trans 列表中(没有数据增强操作):# 调整图像大小到 224x224# 像素值缩放到 [0, 1] 范围# 使用均值和标准差进行归一化# 将图像从 HWC 格式转换为 CHW 格式elif usage == "test":image_trans = [vision.Resize((224, 224)),vision.Rescale(1.0 / 255.0, 0.0),vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),vision.HWC2CHW()]# 定义标签变换操作,将标签转换为 ms.int32 类型。label_trans = transforms.TypeCast(ms.int32)# 加载CIFAR-10数据集,指定数据集路径和用途,并启用随机打乱。dataset = Cifar10Dataset(train_dataset_path, usage=usage, shuffle=True)# 对数据集应用变换操作:dataset = dataset.map(image_trans, 'image')dataset = dataset.map(label_trans, 'label')# 将数据集分批次处理,每个批次包含 batch_size 个样本。如果最后一个批次样本数量不足,则丢弃该批次。dataset = dataset.batch(batch_size, drop_remainder=True)return dataset
# 调用 get_dataset 函数,加载训练数据集,路径为 ./dataset/cifar-10-batches-bin,每个批次包含 128 个样本。
dataset = get_dataset("./dataset/cifar-10-batches-bin", 128, "train")
# 获取每个epoch的批次数,并将其赋值给 batches_per_epoch 变量。
batches_per_epoch = dataset.get_dataset_size()

训练好的模型保存在当前目录的shufflenetv1-5_390.ckpt中,用作评估。

3.3 模型评估

在CIFAR-10的测试集上对模型进行评估。

设置好评估模型的路径后加载数据集,并设置Top 1, Top 5的评估标准,最后用model.eval()接口对模型进行评估。

from mindspore import load_checkpoint, load_param_into_netdef test():# 设置MindSpore的上下文为图模式,并使用Ascend设备mindspore.set_context(mode=mindspore.GRAPH_MODE, device_target="Ascend")# 加载CIFAR-10数据集,用于测试,batch size为128dataset = get_dataset("./dataset/cifar-10-batches-bin", 128, "test")# 初始化ShuffleNetV1模型,模型大小为"2.0x",分类数为10net = ShuffleNetV1(model_size="2.0x", n_class=10)# 从checkpoint文件中加载模型参数param_dict = load_checkpoint("shufflenetv1-5_390.ckpt")# 将加载的参数导入到网络中load_param_into_net(net, param_dict)# 设置模型为评估模式(非训练模式)net.set_train(False)# 定义交叉熵损失函数,使用标签平滑技术,损失减少方法为求平均值loss = nn.CrossEntropyLoss(weight=None, reduction='mean', label_smoothing=0.1)# 定义评估指标,包括损失、Top-1准确率和Top-5准确率eval_metrics = {'Loss': nn.Loss(), 'Top_1_Acc': Top1CategoricalAccuracy(),'Top_5_Acc': Top5CategoricalAccuracy()}# 使用模型、损失函数和评估指标初始化Model对象model = Model(net, loss_fn=loss, metrics=eval_metrics)# 记录评估开始的时间start_time = time.time()# 进行模型评估,使用dataset_sink_mode=False表示不使用数据下沉模式res = model.eval(dataset, dataset_sink_mode=False)# 计算评估所用时间use_time = time.time() - start_timehour = str(int(use_time // 60 // 60))minute = str(int(use_time // 60 % 60))second = str(int(use_time % 60))# 生成评估结果的日志信息log = "result:" + str(res) + ", ckpt:'" + "./shufflenetv1-5_390.ckpt" \+ "', time: " + hour + "h " + minute + "m " + second + "s"print(log)# 将日志信息写入到eval_log.txt文件中filename = './eval_log.txt'#指定日志文件名为eval_log.txt。with open(filename, 'a') as file_object:#以追加模式打开日志文件。file_object.write(log + '\n')#将日志信息写入到文件中。if __name__ == '__main__':test()

3.4 模型预测

 在CIFAR-10的测试集上对模型进行预测,并将预测结果可视化。

import mindspore
import matplotlib.pyplot as plt
import mindspore.dataset as ds# 初始化ShuffleNetV1模型
net = ShuffleNetV1(model_size="2.0x", n_class=10)
# 创建一个空列表用于存储结果
show_lst = []
# 从checkpoint文件中加载模型参数
param_dict = load_checkpoint("shufflenetv1-5_390.ckpt")
load_param_into_net(net, param_dict)
# 使用加载的参数初始化模型
model = Model(net)
# 加载CIFAR-10数据集用于预测,设置不进行数据混洗
dataset_predict = ds.Cifar10Dataset(dataset_dir="./dataset/cifar-10-batches-bin", shuffle=False, usage="train")
# 加载CIFAR-10数据集用于显示,设置不进行数据混洗
dataset_show = ds.Cifar10Dataset(dataset_dir="./dataset/cifar-10-batches-bin", shuffle=False, usage="train")
dataset_show = dataset_show.batch(16)
# 获取一批图像用于显示
show_images_lst = next(dataset_show.create_dict_iterator())["image"].asnumpy()
# 定义图像转换操作
image_trans = [vision.RandomCrop((32, 32), (4, 4, 4, 4)),vision.RandomHorizontalFlip(prob=0.5),vision.Resize((224, 224)),vision.Rescale(1.0 / 255.0, 0.0),vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),vision.HWC2CHW()]
# 应用图像转换操作到预测数据集
dataset_predict = dataset_predict.map(image_trans, 'image')
dataset_predict = dataset_predict.batch(16)
# 定义类别字典,将类别标签转换为类别名称
class_dict = {0:"airplane", 1:"automobile", 2:"bird", 3:"cat", 4:"deer", 5:"dog", 6:"frog", 7:"horse", 8:"ship", 9:"truck"}
# 推理效果展示(上方为预测的结果,下方为推理效果图片)
# 创建图像显示窗口
plt.figure(figsize=(16, 5))
# 获取一批用于预测的数据
predict_data = next(dataset_predict.create_dict_iterator())
# 进行预测
output = model.predict(ms.Tensor(predict_data['image']))
# 获取预测结果的类别
pred = np.argmax(output.asnumpy(), axis=1)
# 显示预测结果和对应的图像
index = 0
for image in show_images_lst:plt.subplot(2, 8, index+1)plt.title('{}'.format(class_dict[pred[index]]))index += 1plt.imshow(image)plt.axis("off")
plt.show()

 打卡 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/373187.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

信创:鲲鹏(arm64)+麒麟(kylin v10)离线部署k8s和kubesphere(含离线部署新方式)

本文将详细介绍,如何基于鲲鹏CPU(arm64)和操作系统 Kylin V10 SP2/SP3,利用 KubeKey 制作 KubeSphere 和 Kubernetes 离线安装包,并实战部署 KubeSphere 3.3.1 和 Kubernetes 1.22.12 集群。 服务器配置 主机名IPCPUOS用途master-1192.168.10…

变长输入神经网络设计

我对使用 PyTorch 可以轻松构建动态神经网络的想法很感兴趣,因此我决定尝试一下。 我脑海中的应用程序具有可变数量的相同类型的输入。对于可变数量的输入,已经使用了循环或递归神经网络。但是,这些结构在给定行的输入之间施加了一些顺序或层…

7.9实验室总结 SceneBuilder的使用方法+使用javafx等

由于下错了东西,所以一直运行不出来,今天一直在配置环境,配置好了才学,所以没学多少,看了网课学习了SceneBuilder的使用方法还有了解了javafx是怎么写项目的,, 学习了怎么跳转页面:…

html H5 dialog弹窗学习,实现弹窗显示内容 替代confirm、alert

html H5 dialog弹窗学习,实现弹窗内容 替代confirm 框架使用的mui,使用mui.confirm() 弹窗内容过多时,弹窗被撑的到屏幕外去了,使用H5 dialog 标签自定义一个固定大小的弹窗,内容过多时可下拉显示 效果展示 隐私政策内容很多,可以下拉显示 代码 myDialog.css dialog{p…

【光伏仿真系统】光伏设计的基本步骤

随着全球对可再生能源需求的不断增长,光伏发电作为一种清洁、可再生的能源形式,正日益受到重视。光伏设计是确保光伏系统高效、安全、经济运行的关键环节,它涉及从选址评估到系统安装与维护的全过程。本文将详细介绍光伏设计的基本步骤&#…

【RHCE】转发服务器实验

1.在本地主机上操作 2.在客户端操作设置主机的IP地址为dns 3.测试,客户机是否能ping通

LLM应用构建前的非结构化数据处理(三)文档表格的提取

1.学习内容 本节次学习内容来自于吴恩达老师的Preprocessing Unstructured Data for LLM Applications课程,因涉及到非结构化数据的相关处理,遂做学习整理。 本节主要学习pdf中的表格数据处理 2.环境准备 和之前一样,可以参考LLM应用构建前…

Raylib 实现超大地图放大缩小与两种模式瓦片地图刷新

原理: 一种刷新模式: 在宫格内整体刷新,类似九宫格移动到边缘,则九宫格整体平移一个宫格,不过这里是移动一个瓦片像素,实际上就是全屏刷新,这个上限是 笔记本 3060 70帧 100*100个瓦片每帧都…

压缩感知3——重构算法正交匹配追踪算法

算法流程 问题的实质是&#xff1a;AX Y 求解&#xff08;A是M维&#xff0c;Y是N维且N>>M并且稀疏度K<M&#xff09;明显X有无穷多解&#xff0c;重构过程是M次采样得到的采样值升维的过程。OMP算法的具体步骤&#xff1a;(1)用X表示信号&#xff0c;初始化残差e0 …

802.11漫游流程简单解析与笔记_Part2_05_wpa_supplicant如何通过nl80211控制内核开始关联

最近在进行和802.11漫游有关的工作&#xff0c;需要对wpa_supplicant认证流程和漫游过程有更多的了解&#xff0c;所以通过阅读论文等方式&#xff0c;记录整理漫游相关知识。Part1将记录802.11漫游的基本流程、802.11R的基本流程、与认证和漫游都有关的三层秘钥基础。Part1将包…

C#用反射机制调用dll文件的字段、属性和方法

1、创建dll文件 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks;namespace CLStudent {public class Student{//字段public string Name "Tom";//属性public double ChineseScore { get; s…

connect to github中personal access token生成token方法

一、问题 执行git push时弹出以下提示框 二、解决方法 去github官网生成Token&#xff0c;步骤如下 选择要授予此 令牌token 的 范围 或 权限 要使用 token 从命令行访问仓库&#xff0c;请选择 repo 。 要使用 token 从命令行删除仓库&#xff0c;请选择 delete_repo 其他根…

下载Windows版本的pycharm

Python环境搭建 第一步下载安装python 等待安装完成 验证python是否安装成功 Python开发工具安装部署 JetBrains: Essential tools for software developers and teams PyCharm: the Python IDE for data science and web development 下载社区版本的PyCharm 双击打开下载好的…

C++20中的基于范围的for循环(range-based for loop)

C11中引入了对基于范围的for循环(range-based for loop)的支持&#xff1a;该循环对一系列值(例如容器中的所有元素)进行操作。代码段如下&#xff1a; const std::vector<int> vec{ 1,2,3,4,5 }; for (const auto& i : vec)std::cout << i << ", …

Github Actions 构建Vue3 + Vite项目

本篇文章以自己创建的项目为例&#xff0c;用Github Actions构建。 Github地址&#xff1a;https://github.com/ling08140814/myCarousel 访问地址&#xff1a;https://ling08140814.github.io/myCarousel/ 具体步骤&#xff1a; 1、创建一个Vue3的项目&#xff0c;并完成代…

书生大模型实战营(暑假场)-入门岛-第一关

书生大模型实战营暑假场重磅开启&#xff01;&#xff0c;这场学习路线看起来很好玩呀&#xff0c;闯关学习既能学到知识又有免费算力可得&#xff0c;太良心啦。感兴趣的小伙伴赶快一起报名学习吧&#xff01;&#xff01;&#xff01; 关卡任务 好的&#xff0c;我们废话不多…

CentOS6用文件配置IP模板

CentOS6用文件配置IP模板 到 CentOS6.9 , 默认还不能用 systemctl , 能用 service chkconfig sshd on 对应 systemctl enable sshd 启用,开机启动该服务 ### chkconfig sshd on 对应 systemctl enable sshd 启用,开机启动该服务 sudo chkconfig sshd onservice sshd start …

Profibus转ModbusTCP网关模块实现Profibus_DP向ModbusTCP转换

Profibus和ModbusTCP是工业控制自动化常用的二种通信协议。Profibus是一种串口通信协议&#xff0c;它提供了迅速靠谱的数据传输和各种拓扑结构&#xff0c;如总线和星型构造。Profibus可以和感应器、执行器、PLC等各类设备进行通信。 ModbusTCP是一种基于TCP/IP协议的通信协议…

FPGA开发笔试1

1. 流程简介 我是两天前有FPGA公司的HR来问我实习的事情&#xff0c;她当时问我距离能不能接受&#xff0c;不过确实距离有点远&#xff08;地铁通勤要将近一个半小时&#xff09;&#xff0c;然后她说给我约个时间&#xff0c;抽空做1个小时的题目&#xff08;线上做&#xf…

800 元打造家庭版 SOC 安全运营中心

今天,我们开始一系列新的文章,将从独特而全面的角度探索网络安全世界,结合安全双方:红队和蓝队。 这种方法通常称为“紫队”,集成了进攻和防御技术,以提供对威胁和安全解决方案的全面了解。 在本系列的第一篇文章中,我们将指导您完成以 100 欧元约800元左右的预算创建…