STM32-OC输出比较和PWM

本内容基于江协科技STM32视频内容,整理而得。

文章目录

  • 1. OC输出比较和PWM
    • 1.1 OC输出比较
    • 1.2 PWM(脉冲宽度调制)
    • 1.3 输出比较通道(高级)
    • 1.4 输出比较通道(通用)
    • 1.5 输出比较模式
    • 1.6 PWM基本结构
    • 1.7 参数计算
  • 2. 舵机和直流电机
    • 2.1 舵机简介
      • 2.1.2 硬件电路
    • 2.2 直流电机及驱动简介
    • 2.3 电机驱动硬件电路
  • 3. 输出比较库函数及代码
    • 3.1 输出比较库函数
    • 3.2 PWM驱动LED呼吸灯
      • 3.2.1 硬件连接
      • 3.2.2 代码流程
      • 3.2.3 代码
    • 3.3 PWM驱动舵机
      • 3.3.1 硬件连接
      • 3.3.2 代码流程
      • 3.3.3 代码
    • 3.4 PWM驱动直流电机
      • 3.4.1 硬件连接
      • 3.4.2 代码流程
      • 3.4.3 代码

1. OC输出比较和PWM

1.1 OC输出比较

  • 输出比较可以通过比较CNT与CCR(捕获/比较寄存器)寄存器值的关系,来对输出电平进行置1、置0或翻转的操作,用于输出一定频率和占空比的PWM波形
  • 每个高级定时器和通用定时器都拥有4个输出比较通道
  • 高级定时器的前3个通道额外拥有死区生成和互补输出的功能。
    image.png

1.2 PWM(脉冲宽度调制)

  • 在具有惯性的系统中,可以通过对一系列脉冲的宽度进行调制,来有效地获得所需要的模拟参量,常应用于电机控速等领域。

  • PWM参数:
    频率 = 1 / TS
    占空比 = TON / TS
    分辨率 = 占空比变化步距
    image.png
    高低电平跳变的数字信号可以等效为中间这个虚线所表示的模拟量,当上面电平时间长一点,下面电平短一点的时候,等效的模拟量就偏向于上面;当下面电平时间长一点,上面电平时间短一点的时候,等效的模拟量就偏向于下面。

  • 频率
    TS代表一个高低电平变换周期的时间,周期的倒数就是频率,PWM频率越快,那它等效模拟的信号就越平稳,不过同时性能开销就越大,一般来说PWM的频率都在几K到几十KHz,这个频率就已经足够快了。

  • 占空比
    占空比决定了PWM等效出来的模拟电压的大小,占空比越大,等效的模拟电压就越趋近于高电平;占空比越小,等效的模拟电压就越趋近于低电平,等效关系一般来说是线性的。

  • 分辨率
    分辨率:比如有的占空比只能是1%、2%、3%等等这样以1%的步距跳变,那分辨率就是1%。如果可以是1.1%、1.2%、1.3%等等这样以0.1%的步距跳变,那分辨率就是0.1%。分辨率就是占空比变化的精细程度。这个分辨率需要多高,得看实际项目的需求,如果即要高频率,又要高分辨率,这就对硬件电路要求比较高。如果要求不高的话,1%的分辨率也就足够使用了。
    使用PWM波形,可以在数字系统等效输出模拟量,就能实现LED控制亮度、电机控速等功能。

1.3 输出比较通道(高级)

image.png
image.png

1.4 输出比较通道(通用)

image.png
image.png

  • ETRF输入:是定时器的一个小功能,一般不用。
  • CCR1:捕获/比较寄存器1;
  • CCER:捕获/比较使能寄存器;
  • CCMR1:捕获/比较模式寄存器1;
  • 左边是CNT计数器和CCR1(第一路捕获/比较寄存器),当CNT>CCR1或CNT=CCR1时,就会给输出模式控制器传一个信号,输出模式控制器就会改变它输出OC1 REF(ref是指参考信号)的高低电平。
  • REF信号可以往上前往主模式控制器,可以把REF映射到主模式的TRGO输出上;
  • REF信号往下走就到达极性选择,主要走下面一条路:给寄存器CCER的CC1P位写0,信号往上走,就是信号电平不翻转;寄存器写1,信号往下走,就是信号通过一个非门取反,则输出信号就是输入信号高低电平反转的信号。这就是极性选择:就是选择是不是要把高低电平反转一下。
  • 输出使能电路:选择要不要输出;
  • OC1引脚:是CH1通道的引脚。

1.5 输出比较模式

就是输出模式控制器里面执行的逻辑。模式控制器的输入是CNT和CCR的大小关系,输出是REF的高低电平,

模式 描述
冻结 CNT=CCR时,REF保持为原状态
匹配时置有效电平 CNT=CCR时,REF置有效电平
匹配时置无效电平 CNT=CCR时,REF置无效电平
匹配时电平翻转 CNT=CCR时,REF电平翻转
强制为无效电平 CNT与CCR无效,REF强制为无效电平
强制为有效电平 CNT与CCR无效,REF强制为有效电平
PWM模式1 向上计数: CNT < CCR时,REF置有效电平,CNT ≥ CCR时,REF置无效电平
向下计数:CNT > CCR时,REF置无效电平,CNT ≤ CCR时,REF置有效电平
PWM模式2 向上计数: CNT < CCR时,REF置无效电平,CNT ≥ CCR时,REF置有效电平
向下计数:CNT > CCR时,REF置有效电平,CNT ≤ CCR时,REF置无效电平
  • 冻结
    当正在输出PWM波,突然想暂停一会输出,可以设置为该模式。当切换为冻结模式后,输出就暂停了,并且高低电平也维持为暂停时刻的状态,保持不变。

  • 匹配时模式

    • 有效电平和无效电平是高级定时器里的说法,是和关断、刹车这些功能配合的。置有效电平就是置高电平,置无效电平就是置低电平。这三个模式都是当CNT和CCR值相等时,执行操作。这些模式就是可以用做波形输出。
    • 匹配时电平翻转:可以输出一个频率可调,占空比始终为50%的PWM波形。比如设置CCR为0,那CNT每次更新清0时,就会产生一次CNT=CCR的事件,这就会导致输出电平翻转一次,每更新两次,输出为一个周期。并且高电平和低电平的时间始终是相等的,也就是占空比始终为50%。当改变定时器更新频率时,输出波形的频率也会随之改变,输出波形的频率=更新频率/2,因为更新两次才为一个周期。
  • 强制模式
    如果想暂停波形输出,并且在暂停期间保持低电平或高电平,则可以设置为强制模式。

  • PWM模式1和PWM模式2
    PWM1和PWM2可以用于输出频率和占空比都可调的PWM波形。
    PWM模式2实际上就是PWM模式1输出的取反。

1.6 PWM基本结构

蓝色线:CNT;黄色线:ARR;红色线:CCR;绿色线:输出REF
不需要更新事件的中断申请。在配置好时基单元后,CNT就可以开始不断地自增运行了,CCR设置的高,则占空比大;设置的低,占空比小。

  • 输出比较单元的最开始是CCR捕获/比较寄存器。
  • 输出模式控制单元里是PWM模式1的执行逻辑。
  • REF是一个频率可调,占空比可调的PWM波形。再通过极性选择,输出使能,最终通向GPIO口。这样就能完成PWM波形的输出了。
    • 蓝色CNT从0开始自增,一直到黄色ARR,也就是99,之后清0继续自增,红色线CCR=30,绿色是输出REF,CNT < CCR置高电平,CNT > CCR置低电平。当CNT溢出清0后,CNT又小于CCR,所以置高电平。这样下去,REF电平就不断变化,并且它的占空比是受CCR值的调控的,如果CCR设置高一点,输出的占空比就变大;CCR设置低一些,输出的占空比就变小。

1.7 参数计算

image.png
image.png
PWM频率等于计数器的更新频率

2. 舵机和直流电机

2.1 舵机简介

  • 舵机是一种根据输入PWM信号占空比来控制输出角度的装置;
  • 输入PWM信号要求:周期为20ms,高电平宽度为0.5ms~2.5ms。

舵机内部是由直流电机驱动的,内部还有一个控制电路板,是一个电机的控制系统板。舵机内部执行逻辑:PWM信号输入到控制板,给控制板一个指定的目标角度,电位器检测输出轴的当前角度,若大于目标角度,电机就会反转,小于目标角度,电机正转,最终使输出轴固定在指定角度。
image.pngimage.png
这里的PWM波形(输入信号脉冲宽度)是当作一个通信协议来使用的。

2.1.2 硬件电路

image.pngimage.png

2.2 直流电机及驱动简介

  • 直流电机是一种将电能转换为机械能的装置,有两个电极,当电极正接时,电机正转,当电极反接时,电机反转。
  • 直流电机属于大功率器件,GPIO口无法直接驱动,需要配合电机驱动电路来操作。
  • TB6612是一款双路H桥型的直流电机驱动芯片,可以驱动两个直流电机并且控制其转速和方向。里面一路有四个开关管,所以可以控制正反转。

H桥电路由两个推挽电路组成,中间接电机:左边,上管导通,下管断开,左边输出就是接在VM的电机电源正极;下管导通,上管断开,就是接在PGND的电源负极。左上和右下导通,电流从左流向右边;右上和左下导通,电流从右流向左边。
H桥可以控制电流流过的方向,所以能控制电机正反转。
image.png

2.3 电机驱动硬件电路

image.png
PWMA引脚要接PWM信号输出端,其他两个引脚AIN2和AIN1可以任意接两个普通的GPIO口,这三个引脚给一个低功率的控制信号,驱动电路就会从VM汲取电流,来输出到电机,这样就能完成低功率的控制信号控制大功率设备的目的了,
image.png
当IN1和IN2都为高电平,两个输出没有电压差,电机是不会转的。当IN1和IN2都为低电平,两个输出直接关闭,电机也是不会转的。
IN1低电平,IN2高电平,电机处于反转状态,但转与不转取决于PWM,PWM给高电平,那输出就是一低一高,有电压差了,就可以转,定义为反转;如果PWM给低电平,那输出两个低电平,电机还是不转。如果PWM是一个不断翻转的信号,那电机就是快速地反转、停止、反转、停止,如果PWM频率足够快,那电机就可以连续稳定地反转了,并且速度取决于PWM信号的占空比。这里的PWM就是使用PWM来等效一个模拟量的功能。

3. 输出比较库函数及代码

3.1 输出比较库函数

// stm32f10x_tim.h
// 用结构体来初始化输出比较单元的。配置输出比较,参数1(TIMx):选择定时器,参数2:输出比较的参数
void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC3Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC4Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);// 用来给输出比较结构体赋一个默认值的
void TIM_OCStructInit(TIM_OCInitTypeDef* TIM_OCInitStruct);// 配置强制输出模式
void TIM_ForcedOC1Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_ForcedOC2Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_ForcedOC3Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_ForcedOC4Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);// 用来配置CCR寄存器的预装功能的,即写入的值不会立即生效,而是在更新事件才会生效
void TIM_OC1PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC2PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC3PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC4PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);// 用来配置快速使能的
void TIM_OC1FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC2FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC3FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC4FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);// 外部事件时清除REF信号
void TIM_ClearOC1Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);
void TIM_ClearOC2Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);
void TIM_ClearOC3Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);
void TIM_ClearOC4Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);// 更改输出极性,带N的就是高级定时器里互补通道的配置,
void TIM_OC1PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
void TIM_OC1NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity);// 用来单独修改输出使能参数
void TIM_CCxCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCx);
void TIM_CCxNCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCxN);// 用来单独更改输出比较模式的函数
void TIM_SelectOCxM(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_OCMode);// 用来单独更改CCR寄存器值的函数,用于更改占空比
void TIM_SetCompare1(TIM_TypeDef* TIMx, uint16_t Compare1);
void TIM_SetCompare2(TIM_TypeDef* TIMx, uint16_t Compare2);
void TIM_SetCompare3(TIM_TypeDef* TIMx, uint16_t Compare3);
void TIM_SetCompare4(TIM_TypeDef* TIMx, uint16_t Compare4);

引脚重映射:TIM2_CH1能从PA0映射到PA15,实现这一功能需要使用AFIO,则就要开启AFIO时钟。

// 引脚重映射配置
void GPIO_PinRemapConfig(uint32_t GPIO_Remap, FunctionalState NewState);

3.2 PWM驱动LED呼吸灯

3.2.1 硬件连接

LED的正极连接在PA0引脚。

  • 实现功能:通过更改CCR的值来更改占空比。(占空比决定了PWM等效出来的模拟电压的大小,占空比越大,等效的模拟电压就越趋近于高电平;占空比越小,等效的模拟电压就越趋近于低电平,等效关系一般来说是线性的。)因此通过调节占空比的大小可以控制PA0引脚的电平,控制LED的亮度。

image.png

3.2.2 代码流程

  1. PWM初始化
    1. RCC开启时钟,TIM外设和GPIO外设时钟打开;
    2. 配置时基单元,包括前面的时钟源选择;
    3. 配置输出比较单元,里面包括CCR的值、输出比较模式、极性选择、输出使能;
    4. 配置GPIO,把PWM对应的GPIO口初始化为复用推挽输出的配置(使用TIM2定时器–输出比较通道,所以GPIO配置为复用推挽输出)
    5. 运行控制,启动计数器,这样就能输出PWM了。
  2. ARR和PSC设置
    1. PSC = 720 - 1;ARR = 100 - 1。因此输出的PWM波形频率为1KHz。
    2. 占空比Duty = CCR / (ARR + 1) = CCR / 100
  3. main函数
    1. 通过更改CCR的值(调用TIM_SetCompare1函数)来调节占空比的值。

3.2.3 代码

  • PWM.c
#include "stm32f10x.h"                  // Device header/*** 函    数:PWM初始化* 参    数:无* 返 回 值:无*/
void PWM_Init(void)
{/*开启时钟  -- TIM2_CH1_ETR在PA0引脚*/RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);			//开启TIM2的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);			//开启GPIOA的时钟/*GPIO重映射*/
//	RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);			//开启AFIO的时钟,重映射必须先开启AFIO的时钟
//	GPIO_PinRemapConfig(GPIO_PartialRemap1_TIM2, ENABLE);			//将TIM2的引脚部分重映射,具体的映射方案需查看参考手册
//	GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);		//将JTAG引脚失能,作为普通GPIO引脚使用/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;		//GPIO_Pin_15;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);							//将PA0引脚初始化为复用推挽输出	//受外设控制的引脚,均需要配置为复用模式		/*配置时钟源*/TIM_InternalClockConfig(TIM2);		//选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟/*时基单元初始化*/TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;					//计数周期,即ARR的值TIM_TimeBaseInitStructure.TIM_Prescaler = 720 - 1;				//预分频器,即PSC的值TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元/*输出比较初始化*/TIM_OCInitTypeDef TIM_OCInitStructure;							//定义结构体变量TIM_OCStructInit(&TIM_OCInitStructure);							//结构体初始化,若结构体没有完整赋值//则最好执行此函数,给结构体所有成员都赋一个默认值//避免结构体初值不确定的问题TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;				//输出比较模式,选择PWM模式1TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;		//输出极性,选择为高,若选择极性为低,则输出高低电平取反TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;	//输出使能TIM_OCInitStructure.TIM_Pulse = 0;								//初始的CCR值TIM_OC1Init(TIM2, &TIM_OCInitStructure);						//将结构体变量交给TIM_OC1Init,配置TIM2的输出比较通道1/*TIM使能*/TIM_Cmd(TIM2, ENABLE);			//使能TIM2,定时器开始运行
}/*** 函    数:PWM设置CCR* 参    数:Compare 要写入的CCR的值,范围:0~100* 返 回 值:无* 注意事项:CCR和ARR共同决定占空比,此函数仅设置CCR的值,并不直接是占空比*           占空比Duty = CCR / (ARR + 1)*/
void PWM_SetCompare1(uint16_t Compare)
{TIM_SetCompare1(TIM2, Compare);		//设置CCR1的值
}
  • main.c
#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "PWM.h"uint8_t i;			//定义for循环的变量int main(void)
{/*模块初始化*/OLED_Init();		//OLED初始化PWM_Init();			//PWM初始化while (1){for (i = 0; i <= 100; i++){PWM_SetCompare1(i);			//依次将定时器的CCR寄存器设置为0~100,PWM占空比逐渐增大,LED逐渐变亮Delay_ms(10);				//延时10ms}for (i = 0; i <= 100; i++){PWM_SetCompare1(100 - i);	//依次将定时器的CCR寄存器设置为100~0,PWM占空比逐渐减小,LED逐渐变暗Delay_ms(10);				//延时10ms}}
}

3.3 PWM驱动舵机

3.3.1 硬件连接

实现功能:通过设置占空比来控制舵机的角度,并在OLED上显示舵机角度。
image.png

3.3.2 代码流程

  1. 开启时钟(TIM2和GPIOA)
  2. 配置GPIO
  3. 配置时钟(时钟源、时基单元(ARR=20000,PSC=72)、输出比较单元、TIM2使能)
  4. 角度值转换为占空比:
    周期:20ms,高电平:0.5ms ~2.5ms。
高电平角度占空比
0.5ms-90°500/20000
1ms-45°1000/20000
1.5ms1500/20000
2ms45°2000/20000
2.5ms45°2500/20000

转换为:Angle / 180 * 2000 + 500

角度CCR
0500
1802500
  1. main函数
    1. 按键1按下,角度每次自增30,当角度超过180度后,角度值清零
    2. OLED显示角度

3.3.3 代码

  • PWM.c
#include "stm32f10x.h"                  // Device header/*** 函    数:PWM初始化* 参    数:无* 返 回 值:无*/
void PWM_Init(void)
{/*开启时钟*/RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);			//开启TIM2的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);			//开启GPIOA的时钟/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);							//将PA1引脚初始化为复用推挽输出	//受外设控制的引脚,均需要配置为复用模式/*配置时钟源*/TIM_InternalClockConfig(TIM2);		//选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟/*时基单元初始化*/TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数TIM_TimeBaseInitStructure.TIM_Period = 20000 - 1;				//计数周期,即ARR的值TIM_TimeBaseInitStructure.TIM_Prescaler = 72 - 1;				//预分频器,即PSC的值TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元/*输出比较初始化*/ TIM_OCInitTypeDef TIM_OCInitStructure;							//定义结构体变量TIM_OCStructInit(&TIM_OCInitStructure);                         //结构体初始化,若结构体没有完整赋值//则最好执行此函数,给结构体所有成员都赋一个默认值//避免结构体初值不确定的问题TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;               //输出比较模式,选择PWM模式1TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;       //输出极性,选择为高,若选择极性为低,则输出高低电平取反TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;   //输出使能TIM_OCInitStructure.TIM_Pulse = 0;								//初始的CCR值TIM_OC2Init(TIM2, &TIM_OCInitStructure);                        //将结构体变量交给TIM_OC2Init,配置TIM2的输出比较通道2/*TIM使能*/TIM_Cmd(TIM2, ENABLE);			//使能TIM2,定时器开始运行
}/*** 函    数:PWM设置CCR* 参    数:Compare 要写入的CCR的值,范围:0~100* 返 回 值:无* 注意事项:CCR和ARR共同决定占空比,此函数仅设置CCR的值,并不直接是占空比*           占空比Duty = CCR / (ARR + 1)*/
void PWM_SetCompare2(uint16_t Compare)
{TIM_SetCompare2(TIM2, Compare);		//设置CCR2的值
}
  • Servo.c
#include "stm32f10x.h"                  // Device header
#include "PWM.h"/*** 函    数:舵机初始化* 参    数:无* 返 回 值:无*/
void Servo_Init(void)
{PWM_Init();									//初始化舵机的底层PWM
}/*** 函    数:舵机设置角度* 参    数:Angle 要设置的舵机角度,范围:0~180* 返 回 值:无*/
void Servo_SetAngle(float Angle)
{PWM_SetCompare2(Angle / 180 * 2000 + 500);	//设置占空比//将角度线性变换,对应到舵机要求的占空比范围上
}
  • main.c
#include "OLED.h"
#include "Servo.h"
#include "Key.h"uint8_t KeyNum;			//定义用于接收键码的变量
float Angle;			//定义角度变量int main(void)
{/*模块初始化*/OLED_Init();		//OLED初始化Servo_Init();		//舵机初始化Key_Init();			//按键初始化/*显示静态字符串*/OLED_ShowString(1, 1, "Angle:");	//1行1列显示字符串Angle:while (1){KeyNum = Key_GetNum();			//获取按键键码if (KeyNum == 1)				//按键1按下{Angle += 30;				//角度变量自增30if (Angle > 180)			//角度变量超过180后{Angle = 0;				//角度变量归零}}Servo_SetAngle(Angle);			//设置舵机的角度为角度变量OLED_ShowNum(1, 7, Angle, 3);	//OLED显示角度变量}
}

3.4 PWM驱动直流电机

3.4.1 硬件连接

实现功能:通过占空比控制直流电机的速度
电机驱动模块的PWMA接在PA2引脚(TIM2_CH3),AIN1接在PA4引脚,AIN2接在PA5引脚。
image.png

3.4.2 代码流程

  1. 开启时钟(TIM2和GPIOA)

  2. 配置GPIO

  3. 配置时钟(时钟源、时基单元、输出比较单元、TIM2使能)

  4. 配置电机:
    a. 设置速度(范围:-100~100):
    电机正转,速度值大于0,PA4为高电平,PA5为低电平;
    电机反转,速度值小于0,PA4为低电平,PA5为高电平。

  5. main函数

    1. 按键按下,速度值自增20
    2. OLED显示速度

3.4.3 代码

  • PWM.c
#include "stm32f10x.h"                  // Device header/*** 函    数:PWM初始化* 参    数:无* 返 回 值:无*/
void PWM_Init(void)
{/*开启时钟*/RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);			//开启TIM2的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);			//开启GPIOA的时钟/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);							//将PA2引脚初始化为复用推挽输出	//受外设控制的引脚,均需要配置为复用模式/*配置时钟源*/TIM_InternalClockConfig(TIM2);		//选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟/*时基单元初始化*/TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;                 //计数周期,即ARR的值TIM_TimeBaseInitStructure.TIM_Prescaler = 36 - 1;               //预分频器,即PSC的值TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元/*输出比较初始化*/ TIM_OCInitTypeDef TIM_OCInitStructure;							//定义结构体变量TIM_OCStructInit(&TIM_OCInitStructure);                         //结构体初始化,若结构体没有完整赋值//则最好执行此函数,给结构体所有成员都赋一个默认值//避免结构体初值不确定的问题TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;               //输出比较模式,选择PWM模式1TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;       //输出极性,选择为高,若选择极性为低,则输出高低电平取反TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;   //输出使能TIM_OCInitStructure.TIM_Pulse = 0;								//初始的CCR值TIM_OC3Init(TIM2, &TIM_OCInitStructure);                        //将结构体变量交给TIM_OC3Init,配置TIM2的输出比较通道3/*TIM使能*/TIM_Cmd(TIM2, ENABLE);			//使能TIM2,定时器开始运行
}/*** 函    数:PWM设置CCR* 参    数:Compare 要写入的CCR的值,范围:0~100* 返 回 值:无* 注意事项:CCR和ARR共同决定占空比,此函数仅设置CCR的值,并不直接是占空比*           占空比Duty = CCR / (ARR + 1)*/
void PWM_SetCompare3(uint16_t Compare)
{TIM_SetCompare3(TIM2, Compare);		//设置CCR3的值
}
  • Motor.c
#include "stm32f10x.h"                  // Device header
#include "PWM.h"/*** 函    数:直流电机初始化* 参    数:无* 返 回 值:无*/
void Motor_Init(void)
{/*开启时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);		//开启GPIOA的时钟GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);						//将PA4和PA5引脚初始化为推挽输出	PWM_Init();													//初始化直流电机的底层PWM
}/*** 函    数:直流电机设置速度* 参    数:Speed 要设置的速度,范围:-100~100* 返 回 值:无*/
void Motor_SetSpeed(int8_t Speed)
{if (Speed >= 0)							//如果设置正转的速度值{GPIO_SetBits(GPIOA, GPIO_Pin_4);	//PA4置高电平GPIO_ResetBits(GPIOA, GPIO_Pin_5);	//PA5置低电平,设置方向为正转PWM_SetCompare3(Speed);				//PWM设置为速度值}else									//否则,即设置反转的速度值{GPIO_ResetBits(GPIOA, GPIO_Pin_4);	//PA4置低电平GPIO_SetBits(GPIOA, GPIO_Pin_5);	//PA5置高电平,设置方向为反转PWM_SetCompare3(-Speed);			//PWM设置为负的速度值,因为此时速度值为负数,而PWM只能给正数}
}
  • main.c
#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Motor.h"
#include "Key.h"uint8_t KeyNum;		//定义用于接收按键键码的变量
int8_t Speed;		//定义速度变量int main(void)
{/*模块初始化*/OLED_Init();		//OLED初始化Motor_Init();		//直流电机初始化Key_Init();			//按键初始化/*显示静态字符串*/OLED_ShowString(1, 1, "Speed:");		//1行1列显示字符串Speed:while (1){KeyNum = Key_GetNum();				//获取按键键码if (KeyNum == 1)					//按键1按下{Speed += 20;					//速度变量自增20if (Speed > 100)				//速度变量超过100后{Speed = -100;				//速度变量变为-100//此操作会让电机旋转方向突然改变,可能会因供电不足而导致单片机复位//若出现了此现象,则应避免使用这样的操作}}Motor_SetSpeed(Speed);				//设置直流电机的速度为速度变量OLED_ShowSignedNum(1, 7, Speed, 3);	//OLED显示速度变量}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/375465.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

批量制作word表格

问题背景 将excel表中的成绩内容制作为成绩单&#xff0c;每页对应一个学员的成绩&#xff0c;方便打印 代码实现 ## 导入包 import pandas as pd from docx import Document from docx.enum.text import WD_ALIGN_PARAGRAPH,WD_LINE_SPACING# 读取 Excel 内容 df pd.read_e…

docker基础知识以及windows上的docker desktop 安装

记录以供备忘 基础概念&#xff1a; 什么是docker 将程序和环境一起打包&#xff0c;以在不同操作系统上运行的工具软件 什么是基础镜像 选一个基础操作系统和语言后&#xff0c;将对应的文件系统、依赖库、配置等打包为一个类似压缩包的文件&#xff0c;就是基础镜像 什么是…

基于FPGA的数字信号处理(15)--定点数的舍入模式(6)向0取整fix

前言 在之前的文章介绍了定点数为什么需要舍入和几种常见的舍入模式。今天我们再来看看另外一种舍入模式&#xff1a;向上取整fix。 10进制数的fix fix&#xff1a;也叫 向0取整。它的舍入方式是数据往0的方向&#xff0c;舍入到最近的整数&#xff0c;比如1.75 fix到2&#xf…

【SQL】如何用SQL写透视表

【背景】 报表中有一大需求是透视表,目前有很多分析类应用也搭载了此类功能,那么我们能不能直接用SQL做透视表呢? 【分析】 BI类软件将透视表功能做在了前端,但是数据本身还是存储在数据库中,所以必然有方法可以用SQL直接实现透视表。 【心法】 透视表是任意选取一个…

LVS集群及其它的NAT模式

1.lvs集群作用&#xff1a;是linux的内核层面实现负载均衡的软件&#xff1b;将多个后端服务器组成一个高可用、高性能的服务器的集群&#xff0c;通过负载均衡的算法将客户端的请求分发到后端的服务器上&#xff0c;通过这种方式实现高可用和负载均衡。 2.集群和分布式&#…

开源项目的认识理解

目录 开源项目有哪些机遇与挑战&#xff1f; 1.开源项目的发展趋势 2.开源的经验分享&#xff08;向大佬请教与上网查询&#xff09; 3.开源项目的挑战 开源项目有哪些机遇与挑战&#xff1f; 1.开源项目的发展趋势 1. 持续增长与普及 - 开源项目将继续增长&#xff0c…

Java客户端调用SOAP方式的WebService服务实现方式分析

简介 在多系统交互中&#xff0c;有时候需要以Java作为客户端来调用SOAP方式的WebService服务&#xff0c;本文通过分析不同的调用方式&#xff0c;以Demo的形式&#xff0c;帮助读者在生产实践中选择合适的调用方式。 本文JDK环境为JDK17。 结论 推荐使用Axis2或者Jaxws&#…

3款自己电脑就可以运行AI LLM的项目

AnythingLLM、LocalGPT和PrivateGPT都是与大语言模型&#xff08;LLM&#xff09;相关的项目&#xff0c;它们允许用户在本地环境中与文档进行交互&#xff0c;但它们在实现方式和特点上存在一些差异。AnythingLLM使用Pinecone和ChromaDB来处理矢量嵌入&#xff0c;并使用OpenA…

Flask项目搭建及部署 —— Python

flask搭建及部署 pip 19.2.3 python 3.7.5 Flask 1.1.1 Flask-SQLAlchemy 2.4.1 Pika 1.1.0 Redis 3.3.11 flask-wtf 0.14.2 1、创建flask项目&#xff1a; 创建完成后整个项目结构树&#xff1a; app.py: 项⽬管理⽂件&#xff0c;通过它管理项⽬。 static: 存放静态…

Visio 2019 中文版安装下载教程【32/64位】,图文步骤详解,超简单,无套路!!!

文章目录 前言软件介绍软件下载安装步骤激活步骤 前言 本文针对visio 2019 的下载安装进行详细讲解&#xff0c;没有任何套路&#xff0c;大家可以放心使用&#xff0c;由于该类文章容易被和谐&#xff0c;大家可以收藏关注&#xff0c;以免迷路&#xff0c;若安装出现问题&am…

ubuntu重装系统后,安装cuda,cudnn

一、 先安装驱动&#xff0c;如果驱动安装不成功&#xff0c;会影响桌面&#xff0c;再重装系统还来得及&#xff0c;尝试了很多方法&#xff0c;还是用系统安装最靠谱&#xff1a; 首先进入Ubuntu搜索栏目&#xff0c;找到软件更新器的一个图标&#xff0c;点开之后是这样的。…

电力需求预测挑战赛笔记 Taks1 跑通baseline

#AI夏令营 #Datawhale #夏令营 赛题 一句话介绍赛题任务可以这样理解赛题&#xff1a; 【训练时序预测模型助力电力需求预测】 电力需求的准确预测对于电网的稳定运行、能源的有效管理以及可再生能源的整合至关重要。 赛题任务 给定多个房屋对应电力消耗历史 N 天的相关序列数…

网信大数据信用报告查询怎么查?网信大数据有什么作用?

随着互联网的快速发展&#xff0c;大数据技术已经广泛应用于各行各业。其中&#xff0c;网信大数据信用报告查询成为了许多人关注的焦点。那么&#xff0c;如何查询网信大数据信用报告呢?网信大数据又有哪些作用呢?本文将为您一一解答。 一、如何查询网信大数据信用报告? 要…

keepalive和haproxy

1、keepalive 1.1概念 调度器的高可用 vip地址主备之间的切换&#xff0c;主在工作时&#xff0c;vip地址只在主上&#xff0c;主停止工作&#xff0c;vip漂移到备服务器 在主备的优先级不变的情况下&#xff0c;主恢复工作&#xff0c;vip会飘回到主服务器 1、配优先级 …

java通过poi-tl导出word实战详细步骤

文章目录 与其他模版引擎对比1.引入maven依赖包2.新建Word文档exportWprd.docx模版3.编写导出word接口代码4.导出成果 poi-tl是一个基于Apache POI的Word模板引擎&#xff0c;也是一个免费开源的Java类库&#xff0c;你可以非常方便的加入到你的项目中&#xff0c;并且拥有着让…

图论·Day01

P3371 P4779 P3371 【模板】单源最短路径&#xff08;弱化版&#xff09; 注意的点&#xff1a; 边有重复&#xff0c;选择最小边&#xff01;对于SPFA算法容易出现重大BUG&#xff0c;没有负权值的边时不要使用&#xff01;&#xff01;&#xff01; 70分代码 朴素板dijsk…

100 个网络基础知识普及,看完成半个网络高手!

1&#xff09;什么是链接&#xff1f; 链接是指两个设备之间的连接。它包括用于一个设备能够与另一个设备通信的电缆类型和协议。 2&#xff09;OSI 参考模型的层次是什么&#xff1f; 有 7 个 OSI 层&#xff1a;物理层&#xff0c;数据链路层&#xff0c;网络层&#xff0…

医疗器械网络安全 | 漏洞扫描、渗透测试没有发现问题,是否说明我的设备是安全的?

尽管漏洞扫描、模糊测试和渗透测试在评估系统安全性方面是非常重要和有效的工具&#xff0c;但即使这些测试没有发现任何问题&#xff0c;也不能完全保证您的医疗器械是绝对安全的。这是因为安全性的评估是一个多维度、复杂且持续的过程&#xff0c;涉及多个方面和因素。以下是…

uniapp实现table排序

根据后端接口传来的数字大小对列表进行升序/降序展示 效果图&#xff0c;价格由高到低降序 价格由低到高 升序 js 降序升序代码如下 export default {data() {return {MtList:[]}},onLoad() {this.MtypeName();//加载列表方法},methods: {MtypeName(){//列表方法this.$api.…

办公技巧:如何编辑带有工作表保护的Excel文件?

在日常工作中&#xff0c;我们经常会遇到带有工作表保护的Excel文件&#xff0c;这些文件虽然可以被打开查看&#xff0c;但无法直接编辑或修改其中的数据。然而&#xff0c;在某些情况下&#xff0c;我们可能需要编辑这些受保护的工作表以满足工作需求。本文将介绍几种方法来编…