Python精神病算法和自我认知异类数学模型

🎯要点

🎯空间不确定性和动态相互作用自我认知异类模型 | 🎯精神病神经元算法推理 | 🎯集体信念催化个人行动力数学模型 | 🎯物种基因进化关系网络算法 | 🎯电路噪声低功耗容错解码算法

📜和-积消息传递算法用例

📜MATLAB激光通信和-积消息传递算法(Python图形模型算法)模拟调制

🍪语言内容分比

在这里插入图片描述
在这里插入图片描述

🍇Python贝叶斯网络消息传递算法

首先,假设我们有一个多叉树,它是没有循环的图。例如,我们有 4 个变量“下雨”、“洒水器”、“福尔摩斯”和“华生”,有向边分别为“下雨”到“福尔摩斯”、“下雨”到“华生”和“洒水器”到“福尔摩斯”。贝叶斯网络模拟了福尔摩斯和华生是邻居的故事。一天早上,福尔摩斯走出家门,发现草地湿了。要么是下雨了,要么是他忘了关洒水器。于是他去找邻居华生,看看他的草地是否也湿了。当他看到草地确实湿了时,他很确定他没有忘了洒水器,而是下雨了。因此,信息从华生流向洒水器。这种信息流由贝叶斯网络中的消息传递算法建模。

可能性包含有关观察的信息,例如,福尔摩斯草地在未观察的情况下的可能性为 1(湿)和 1(不湿)。如果观察到湿草,可能性变为 1(湿)和 0(不湿)。这些单位向量未归一化。
L ( X ) = ∏ K λ ( K → X ) L(X)=\prod_K \lambda_{(K \rightarrow X)} L(X)=Kλ(KX)
似然函数基本上是变量子级发送的所有传入消息的乘积。它返回一个似然向量,其中包含变量每个可能值的似然值。对于“下雨”,它的基数为 2,代表“是”和“否”两种状态。

如果某个变量没有子节点(因为它是图中的叶节点且未被观察到),则其似然向量将是一个单位向量,其所有可能值均为 1,例如,由于我们一开始没有观察到福尔摩斯的草,因此我们将其似然向量分别设置为 [1, 1],代表“不湿”和“湿”。

Python伪码表示:

def likelihood(self):incoming_children_messages = np.array([c.message_to_parent(self) for c in self.children])return incoming_children_messages.prod(axis=0)

先验是某些事件在开始时就已经知道的概率,例如,下雨的概率为 20%。如果先验未知,则使用以下公式进行计算。先验会给出相应变量的无条件概率。因此,我们还需要包括条件概率。
π ( X ) = ∑ W P ( X ∣ W ) ∏ K ϕ ( K → X ) \pi(X)=\sum_W P(X \mid W) \prod_K \phi_{(K \rightarrow X)} π(X)=WP(XW)Kϕ(KX)
我们的例子中还给出了条件概率。公式中的“P(X|W)”对应于此。此外,我们需要使用来自所有父方的传入消息,即公式中的“ϕ”。索引显示消息方向 - 从父“K”到当前变量“X”。使用这两个部分(条件概率和来自父的消息)是因为它们都提供有关变量概率的信息。一方面,我们看到给定某些父值的概率,另一方面我们看到这些父的消息。如果没有观察,这些信息对应于父的先验。因此,这里计算“X”的边际并摆脱条件变量。

Python伪码表示:

def priors(self):parents_messages = [p.message_to_child(self) for p in self.parents]return reduce(np.dot, [self.m.transpose()]+parents_messages)

信念是我们观察到某些事件后的后验概率。它基本上是可能性和先验的标准化产物。
β ( X ) = α L ( X ) π ( X ) \beta(X)=\alpha L(X) \pi(X) β(X)=αL(X)π(X)
Python伪码表示:

def belief(self):unnormalized = self.likelihood() * self.priors()normalized = unnormalized/unnormalized.sum()return normalized

为了计算变量的可能性,我们需要考虑来自变量子项的所有传入消息,这些消息由似然函数中的 lambda 表示。
λ ( X → K ) = ∑ x ∈ X L ( x ) ∑ k ∈ K ; k ∈ u P ( x ∣ u ) ∏ i ≠ k ϕ ( Y → X ) i \lambda_{(X \rightarrow K)}=\sum_{x \in X} L(x) \sum_{k \in K ; k \in u} P(x \mid u) \prod_{i \neq k} \phi_{(Y \rightarrow X) i} λ(XK)=xXL(x)kK;kuP(xu)i=kϕ(YX)i
这个公式相当混乱,但看一些 Python 代码会更容易理解。一般来说,我们从 P(X|U) 中边缘化 K,而 X 是发送者(子节点),K 是接收者(父节点),U 是 X 的所有父节点,包括 K。如果我们想象一个 X 的条件概率表,对于每个条目,我们取父节点的相应激活,并将相应的传入消息 ϕ 乘以不包含 K 本身的数值。然后,我们将该值乘以 X 的似然值。最后,我们将所有 K 值相同的值相加,剩下向量是从 X 到 K 的消息。

Python伪码表示:

def message_to_parent(self, parent):likelihood = self.likelihood()parents_priors = np.array([p.message_to_child(self) for p in self.parents if p != parent])parent_i = self.parents.index(parent)stack = np.vstack([np.dot(self.m.take(r, axis=parent_i).transpose(),    parents_priors.prod(axis=0)) for r in range(parent.cardinality)])return np.dot(stack, likelihood)

计算父方发送给子方的消息有两种方法。要么将从其他子方收到的所有消息与当前节点的先验相乘,要么将当前节点的信念除以相应子方发送给父方的消息。
κ ( X → K ) = α ∏ C \ K λ ( C → X ) π ( X ) = α β ( X ) λ ( K → X ) \kappa_{(X \rightarrow K)}=\alpha \prod_{C \backslash K} \lambda_{(C \rightarrow X)} \pi(X)=\alpha \frac{\beta(X)}{\lambda_{(K \rightarrow X)}} κ(XK)=αC\Kλ(CX)π(X)=αλ(KX)β(X)
我们认为这个公式称为 Kappa,其索引告诉我们消息的方向(从 X 到 K)。

如果我们看一下信念公式,就会发现这个公式是似然值和先验值的乘积。然而,似然值是所有传入消息的乘积。因此,信念除以来自 K 的传入消息,结果是所有传入消息(除了我们除以的消息)与先验值的乘积。这样,我们就可以解释两种计算 Kappa 的方法之间的相等性。给子方发送消息背后的直觉与给父方发送消息类似。您要考虑所有传入消息,然后将聚合发送到下一个节点。

Python伪码表示:

def message_to_child(self, child):children_messages = []for c in self.children:if c != child:children_messages.append(c.message_to_parent(self))if len(children_messages) > 0:unnormalized = (children_messages * self.get_priors())unnormalized = unnormalized.prod(axis=0)message = unnormalized/unnormalized.sum()return messagereturn self.get_priors()

👉参阅&更新:计算思维 | 亚图跨际

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/375496.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

动手学深度学习(Pytorch版)代码实践 -循环神经网络-55循环神经网络的从零开始实现和简洁实现

55循环神经网络的实现 1.从零开始实现 import math import torch from torch import nn from torch.nn import functional as F from d2l import torch as d2l import matplotlib.pyplot as plt import liliPytorch as lp# 读取H.G.Wells的时光机器数据集 batch_size, num_ste…

C语言中的数组:掌握数据的有序集合【一维数组,二维数组,字符串数组,直方图打印,计算全排列,字符数组常用函数】

目录 C语言中的数组:掌握数据的有序集合【一维数组,二维数组,字符串数组】一维数组一维数组的创建数组的七种初始化完全初始化:部分初始化:字符数组的初始化:自动初始化为0:使用memset函数初始化…

『大模型笔记』GraphRAG:用于复杂数据发现的新工具现已在GitHub上发布

GraphRAG:用于复杂数据发现的新工具现已在GitHub上发布 文章目录 一. GraphRAG:用于复杂数据发现的新工具现已在GitHub上发布1. 评估和结果2. 研究见解和未来方向二. 参考文献一. GraphRAG:用于复杂数据发现的新工具现已在GitHub上发布 下载 GraphRAG今年早些时候,我们介绍…

博客建站3 - 购买域名

1. 本网站的系统架构2. 选择域名 2.1. 确定域名关键词2.2. 保持简洁易记2.3. 检查域名可用性 3. 域名注册商 3.1. 海外的提供商 3.1.1. GoDaddy3.1.2. Namecheap3.1.3. Google Domains 3.2. 国内的提供商 3.2.1. 阿里云(Alibaba Cloud)3.2.2. 腾讯云&…

0502STM32EXTI中断项目代码实现

STM32EXTI中断函数代码实现 对射式红外传感器&旋转编码器计次配置外部中断的步骤:AFIO相关函数&GPIO的一个函数EXTI相关函数代码NVIC中断函数启动文件里的中断函数名字中断编程的建议: 对射式红外传感器&旋转编码器计次 一般一个模块要写的…

SpringBoot:SpringBoot中如何实现对Http接口进行监控

一、前言 Spring Boot Actuator是Spring Boot提供的一个模块,用于监控和管理Spring Boot应用程序的运行时信息。它提供了一组监控端点(endpoints),用于获取应用程序的健康状态、性能指标、配置信息等,并支持通过 HTTP …

windows下使用编译opencv在qt中使用

记录一下:在windows下qt使用opencv 1、涉及需要下载的软件 CMake 下载地址opecnv下载地址mingw(需要配置环境变量) 这个在下载qt的时候可以直接安装一般在qt的安装路径下的tool里比如我的安装路径 (C:\zz\ProgramFiles\QT5.12\Tools\mingw730_64) 2、在安装好CMake…

ChatGPT对话:Scratch编程中一个单词,如balloon,每个字母行为一致,如何优化编程

【编者按】balloon 7个字母具有相同的行为,根据ChatGPT提供的方法,优化了代码,方便代码维护与复用。初学者可以使用7个字母精灵,复制代码到不同精灵,也能完成这个功能,但不是优化方法,也没有提高…

ENSP软件中DHCP的相关配置以及终端通过域名访问服务器

新建拓扑 配置路由器网关IP 设备配置命令&#xff1a;<Huawei> Huawei部分为设备名 <>代表当下所在的模式&#xff0c;不同模式下具有不同的配置权限<Huawei> 第一级模式&#xff0c;最低级模式 查看所有参数<Huawei>system-view 键入系统视图…

Python中的null是什么?

在知乎上遇到一个问题&#xff0c;说&#xff1a;计算机中的「null」怎么读&#xff1f; null正确的发音是/n^l/&#xff0c;有点类似四声‘纳儿’&#xff0c;在计算机中null是一种类型&#xff0c;代表空字符&#xff0c;没有与任何一个值绑定并且存储空间也没有存储值。 P…

STM32的独立看门狗详解

目录 1.独立看门狗是什么&#xff1f; 2.独立看门狗的作用 3.独立看门狗的实现原理 4.独立看门狗用到的寄存器 4.1 IWDG_KR &#xff08;关键字计时器&#xff09; 4.2 IWDG_PR&#xff08;预分频寄存器&#xff09; 4.3 IWDG_RLR&#xff08;重装载寄存器&#xff09…

程序的控制结构——if-else语句(双分支结构)【互三互三】

目录 &#x1f341; 引言 &#x1f341;if-else语句&#xff08;双分支结构&#xff09; &#x1f449;格式1&#xff1a; &#x1f449;功能&#xff1a; &#x1f449;程序设计风格提示&#xff1a; &#x1f449;例题 &#x1f449;格式2&#xff1a; &#x1f449;…

ENSP防火墙综合配置

综合拓扑&#xff1a; 实验要求&#xff1a; 要求一 生产区的安全策略配置 办公区的安全策略 要求二 生产区的安全策略 游客和办公区的安全策略 因为ISP返回的数据包会被防火墙最后的默认安全策略给拒绝&#xff0c;所以&#xff0c;把要ISP返回的数据给允许通过 要求三 增加…

《基于 Kafka + Flink + ES 实现危急值处理措施推荐和范围校准》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; 近期刚转战 CSDN&#xff0c;会严格把控文章质量&#xff0c;绝不滥竽充数&#xff0c;欢迎多多交流。&am…

location匹配的优先级和重定向

nginx的重定向&#xff08;rewrite&#xff09; location 匹配 location匹配的就是后面的uri /wordpress 192.168.233.10/wordpress location匹配的分类和优先级 1.精确匹配 location / 对字符串进行完全匹配&#xff0c;必须完全符合 2.正则匹配 ^-前缀级别&#xff…

【MYSQL】如何解决 bin log 与 redo log 的一致性问题

该问题问的其实就是redo log 的两阶段提交 为什么说redo log 具有崩溃恢复的能力 MySQL Server 层拥有的 bin log 只能用于归档&#xff0c;不足以实现崩溃恢复&#xff08;crash-safe&#xff09;&#xff0c;需要借助 InnoDB 引擎的 redo log 才能拥有崩溃恢复的能力。所谓崩…

Java毕业设计 基于SSM vue电影订票系统小程序 微信小程序

Java毕业设计 基于SSM vue电影订票系统小程序 微信小程序 SSM 电影订票系统小程序 功能介绍 用户 登录 注册 忘记密码 首页 图片轮播 电影信息 电影详情 评论 收藏 预订 电影资讯 资讯详情 用户信息修改 电影评价 我的收藏管理 用户充值 在线客服 我的订单 管理员 登录 个人…

sqlite 数据库 介绍

文章目录 前言一、什么是 SQLite &#xff1f;二、语法三、SQLite 场景四、磁盘文件 前言 下载 目前已经出到了&#xff0c; Version 3.46.0 SQLite&#xff0c;是一款轻型的数据库&#xff0c;是遵守ACID的关系型数据库管理系统&#xff0c;它包含在一个相对小的C库中。它是…

STM32-OC输出比较和PWM

本内容基于江协科技STM32视频内容&#xff0c;整理而得。 文章目录 1. OC输出比较和PWM1.1 OC输出比较1.2 PWM&#xff08;脉冲宽度调制&#xff09;1.3 输出比较通道&#xff08;高级&#xff09;1.4 输出比较通道&#xff08;通用&#xff09;1.5 输出比较模式1.6 PWM基本结…

批量制作word表格

问题背景 将excel表中的成绩内容制作为成绩单&#xff0c;每页对应一个学员的成绩&#xff0c;方便打印 代码实现 ## 导入包 import pandas as pd from docx import Document from docx.enum.text import WD_ALIGN_PARAGRAPH,WD_LINE_SPACING# 读取 Excel 内容 df pd.read_e…