详解yolov5的网络结构

转载自文章

网络结构图(简易版和详细版)

此图是博主的老师,杜老师的图

网络框架介绍

前言:

YOLOv5是一种基于轻量级卷积神经网络(CNN)的目标检测算法,整体可以分为三个部分,

backbone,neck,head。

如上图所示,我们需要先理解三个模块:Conv,C3,SPPF,以便理解网络结构图。

关于这三个模块的解释放在文章末尾。

其他我觉得有用的前置知识也会放在文章末尾。

1.backbone

作用:提取特征

backbone(主干网络)通过一系列的卷积层和池化层对输入图像进行处理,逐渐降低特征图的尺寸同时增加通道数。这样做的目的是保留和提取图像中重要的特征。

经过backbone提取的特征图会传递给后续的特征金字塔网络(neck)和检测头(detection head)进行处理。

分辨率高、尺度大的图片更适合用于预测小目标而不是大目标。

首先,分辨率高的图片具有更多的细节信息,可以提供更丰富的特征和上下文信息。这对于识别和定位小目标非常重要,因为小目标通常具有较少的区分特征,需要更多的细节来进行准确的预测。

其次,尺度大的图片可以容纳更多的目标实例。在一个大尺度的图片中,可能存在多个小目标,而这些小目标在尺度较小的图片中可能会被压缩或截断,导致难以准确预测。因此,对于小目标的预测,使用尺度大的图片可以提供更多的目标实例,增加了模型的训练样本,有助于提高预测的准确性。

然而,对于大目标的预测,使用尺度大的图片可能并不是最佳选择。大目标通常具有明显的外观特征,而且在尺度较小的图片中也能够得到充分表示。此时,使用尺度较小的图片可以减少计算复杂

2.neck

neck(颈部)是backbone(主干网络)和detect(检测头)之间的网络模块。

作用:

在主干网络提取的特征基础上,进一步进行特征融合上采样操作(Upsample),以提供更高级的语义信息适应不同尺度图片的能力

更进一步讲,

在卷积神经网络中,先从浅层提取到图形特征,它们是简单的图形,语义性不够强;

再从深层提取到语义特征,语义性很强了,但却没了简单的图形。

而通过neck部分,就能实现浅层图形特征和深层语义特征的融合,(Concat就是在做这件事情)

归根到底还是为了目标检测能够更精细、准确!

以上这段话借用自记录yolov5目标检测算法学习(模型的框架学习)23/10/10_晴友读钟的博客-CSDN博客

3.head

作用:

对提取到的特征进行进一步处理,并生成最终的输出结果。

细讲一下head中作用的其中一个方面,

特征融合与转换:head可以将不同尺度的特征进行融合和转换,这有助于捕捉更高层的语义信息和上下

参考内容:特征融合与转换:head可以将不同尺度的特征进行融合和转换,这有助于捕捉更高层的语义信息和上下文关系。

我们结合网络结构图,可以看到,head接收了来自深度为第17,20,23层的特征图,

特征图分辨率越来越低,感受野越来越大,虽然可以学习到更高级的语义信息,但也会丢失细节

为了能检测到不同大小的物体,于是设计了detect模块来实现。

文关系。

我们结合网络结构图,可以看到,head接收了来自深度为第17,20,23层的特征图,

特征图分辨率越来越低,感受野越来越大,虽然可以学习到更高级的语义信息,但也会丢失细节

为了能检测到不同大小的物体,于是设计了detect模块来实现。

知识点补充

1.什么是CNN?

CNN通过模拟人类视觉系统的工作原理,通过层层堆叠的卷积层、池化层和全连接层等组件来进行图像数据的特征提取和分类。

2.什么是Conv?

Conv(卷积层)通常是由卷积(Convolution)、批标准化(Batch Normalization)和激活函数(Activation)这三个模块组成的

  1. 卷积(Convolution)

卷积是卷积神经网络最重要的操作之一,它通过在输入数据上滑动一个卷积核(filter),来提取出输入数据中的特征。卷积操作可以帮助网络捕捉到局部的空间信息,并且通过参数共享来减少模型的参数量,从而降低了过拟合的风险。

在卷积操作中,卷积核会对输入数据进行逐元素的乘法累加,从而生成输出特征图。卷积核的大小、步长、填充等超参数可以控制输出特征图的尺寸和感受野大小。此外,卷积操作还可以使用不同的卷积核来提取不同的特征,从而增强网络的表达能力。

  1. 批标准化(Batch Normalization)

批标准化是一种常用的技术,可以帮助网络更好地学习和收敛。它通过对每个小批量数据进行归一化,来使得网络中的每一层输入分布更加稳定。批标准化可以减少梯度消失和梯度爆炸的问题,从而使得网络更易于训练。此外,批标准化还可以增加网络的鲁棒性,使其对输入数据的变化更加稳定。

  1. 激活函数(Activation)

激活函数是卷积神经网络中非常重要的组件之一,对输入数据进行非线性变换,从而增强网络的表达能力。在卷积神经网络中,常用的激活函数包括ReLU、LeakyReLU、Sigmoid、Tanh等。这些激活函数都可以通过将负值置为0或者进行缩放来引入非线性变换,并且具有不同的性质和优缺点。

激活函数的作用是将卷积操作的输出映射到一个非线性空间中,从而使得网络能够更好地学习复杂的特征表示。激活函数还可以帮助网络更好地处理梯度信息,从而加速网络的收敛速度。

特点:

每经过一个Conv,原特征图大小减一半,通道数乘2。

作用:

特征提取和特征融合

k,s,p,c什么意思?

  •     K: Kernel Size(卷积核大小):表示卷积核的尺寸。卷积核通常是一个二维矩阵(我将其比喻为窗口),用于提取输入数据的特征。例如:卷积核为3*3,则表示为k3,为6*6,则表示为k6。卷积核的大小通常是根据具体任务和数据的特点进行选择的。较小的卷积核可以提取更细粒度的特征,而较大的卷积核可以提取更全局的特征。同时,卷积核的大小也会影响模型的计算复杂度和参数量。
  •   S: Stride(步幅):表示卷积核在输入的图像上滑动的步长。它决定了卷积操作的输出尺寸。
  • P: Padding(填充):表示在输入数据周围添加额外的像素值。填充可以使得卷积操作后输出数据的尺寸与输入数据相同或相近。例如,此时要将分辨率为3*3和9*9的图片进行特征融合,为了不改变图像原有的特征,不采用拉伸图像的方法,而是在3*3的图片四周(上下左右)填充灰度,使3*3的图片变为9*9,就可以进行特征融合了。那么要填充多少呢?我们要在四周分别填充p个像素,故为p3。padding_size = (kernel_size - 1) / 2
  • C: Channels(通道数):表示输入数据和卷积核中的通道数量。

通过调整这些参数,可以控制卷积操作的行为和输出结果的尺寸。卷积神经网络中的每一层都可以具有不同的KSPC设置,以适应不同的特征提取需求。

例如,使用3x3大小的卷积核,步幅为1,填充为0,通道数为64的卷积层,可以表示为"Conv(3, 1, 0, 64)"。这意味着在输入数据上使用3x3的卷积核进行卷积操作,步幅为1,不进行填充,并且输出通道数为64。

进一步解释Conv的完整过程,

我们可以将卷积核想象成一个窗口,而输入数据则是一张图片。卷积操作就像是将这个窗口在图片上滑动,对窗口内的像素进行一系列的计算,并生成一个新的像素值。这个新的像素值是通过将窗口内的像素与卷积核内对应位置的权重相乘,再求和得到的。

而步幅(Stride)是指卷积核在输入数据上滑动的距离。通俗地说,步幅就是每次卷积核在输入数据上移动的像素数。

想象一下,你有一张图片,而卷积核就像是一个小窗口,你把这个小窗口放在图片的左上角,然后开始滑动。步幅就是决定你每次滑动的距离。

如果步幅较大,那么你每次滑动的距离就比较长,相当于你在图片上跳跃式地移动。这样可以快速地对整个图片进行处理,但是可能会导致一些细节信息被忽略,因为你没有在每个位置都进行处理。

如果步幅较小,那么你每次滑动的距离就比较短,相当于你在图片上细致地移动。这样可以更好地捕捉到图片的细节信息,但是需要更多的计算和时间来完成整个处理过程。

那么填充有什么用呢?我们知道,经过卷积,特征图大小会减小一般,但我们要保证输出的图像大小跟输入时的大小接近,于是要填充四周。

假设图片为6*6,经过conv层变为3*3,但要保证图片依然为6*6,于是在图片四周填充,使其变回6*6。

Conv(卷积)层的通道有什么用?
通道数的概念:

通道数是指输入或输出中的特征通道数量。对于图像数据来说,通道数通常表示红色、绿色和蓝色(RGB)三个颜色通道。

注意,通道数不仅仅指的是颜色,除了RGB通道之外,还有其他类型的通道可以用于图像处理和深度学习任务。通道数通常用于表示颜色通道、灰度通道、深度通道等。

作用:

增加卷积层的通道数可以提高网络的表达能力,使其更好地适应复杂的任务。

例如:在图像分类过程中,最初的卷积层可以捕捉到低级特征,如边缘和颜色,

然而随着网络模型的深度加深,输出特征图中的模式和结构也越来越复杂。

如果网络太浅或通道数不够,则可能无法捕捉到复杂的特征,从而影响分类性能

总结:增加通道数可以使网络更加灵活和强大

3.什么是C3?

C3模块图如上。C3之所以叫C3,是因为在这个模块中有三个卷积层(Conv)

解释:

可以看到左侧卷积提取了一半的feature(特征),什么也不干,

右侧卷积也提取了一半的feature,使其经过BottleNeck(有两种)处理后,

两个部分进行Concat(拼接),然后再经过一次卷积层

作用:

从不同维度去提取特征并融合

4.什么是SPPF?

了解SPPF前,我们先要知道SPP(Spatial Pyramid Pooling),中文为空间金字塔池化

而SPPF(Spatial Pyramid Pooling Fusion)则是SPP的改进版。

什么是SPP?

在传统的CNN网络中,全连接层要求输入的特征图大小必须固定,但是图像中的物体大小和数量却是不确定的。因此,在使用全连接层之前,需要将所有的特征图resize到一个固定大小,这就会丢失掉部分信息(缺点)。

而SPP层可以通过金字塔池化的方式,在不同的尺度下进行池化操作,并将各个尺度的池化结果进行concat(拼接)作为输出,这样就可以在不改变特征图大小的情况下,得到一个固定长度的向量表示,从而解决了输入大小的问题。

SPPF和SPP的作用:

用于将不同尺度的特征进行融合,通过对特征图进行金字塔划分和池化操作,将多尺度特征整合到一个固定长度的特征向量中。

优点:

SPP可以处理任意大小的输入特征图,因此可以避免特征图大小变化对模型的影响。

SPP是如何运作的?

1.输入图像:SPP层可以接受任意大小的输入图像。

2.特征提取网络:通常使用预训练好的卷积神经网络(CNN)来提取图像特征。

3.SPP:对于不同大小的输入图像,SPP层会自动根据其大小分别生成多个不同尺度的池化区域,在这里是13*13,9*9,5*5。然后在每个池化区域内执行最大池化操作,得到固定大小的特征向量。

4.Concat:将多个尺度的特征向量(即上一步的池化结果)进行拼接

SPPF在SPP上有何改进?

与SPP相比,SPPF的池化操作由并联变为串联,且池化区域大小不变。后面两次池化是在上一次的基础上进行的。提高了效率,原理此处不展开讲。

5.什么是语义信息?

通俗地讲,语义信息是指数据中所隐含的意义和信息。

在人类语言中,一句话由多个字词组成,每一个字词都有语义信息,我们通过分析每一个词的语义信息,就能推导出整句话的含义。

类似的,在计算机视觉中,一张图片由若干个像素组成,每一个像素都有其自身的颜色和位置信息,通过分析每一个像素的颜色和位置信息,就能推导出整张图片的含义

6.什么是图形特征?

关于这个概念,简单理解即可。

图形特征,就是一张图像所含有的特征

例如:形状,纹理,颜色,边缘等,这些都是图像的特征,统称图形特征

7.什么是上采样操作?

结构图中的Upsample就是常见的上采样操作。

作用:

上采样操作会将较低分辨率的特征图进行上采样,以恢复到与较高分辨率特征图相同的尺寸

说人话就是,把较小的输入图像恢复出较大的图像。

yolov5中的Upsample操作是为了让不同尺寸的图像拼接,特征融合

8.特征图尺度,细节信息,语义信息之间有什么联系?

较浅的特征图(即较大尺度,分辨率较高的特征图)可以捕捉到更多的细节信息,例如物体的纹理等。

较深的特征图(即较小尺度,分辨率较低的特征图)则具有更高级的语义信息,例如物体的类别,姿态等。

因此,需要利用不同尺度的特征图,以保留丰富的语义信息和细节信息。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/375582.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

警钟!电池储能安全事故频发!物联网技术如何加强储能安全排查?

在新能源时代背景下,储能系统作为能源转型的关键支撑技术,其安全问题日益凸显,尤其是近期海外电池项目连续发生的事故,为全球储能行业敲响了警钟。面对这一挑战,物联网技术以其强大的数据采集、智能分析与远程监控能力…

【计算机组成原理 | 第二篇】计算机硬件架构的发展

目录 前言: 冯诺依曼计算机架构 现代计算机架构: 总结: 前言: 在当今数字化时代,计算机硬件不仅是技术进步的见证者,更是推动这一进步的基石。它们构成了我们日常生活中不可或缺的数字生态系统的核心&a…

4. 小迪安全v2023笔记 javaEE应用

4. 小迪安全v2023笔记 javaEE应用 ​ 大体上跟随小迪安全的课程,本意是记录自己的学习历程,不能说是完全原创吧,大家可以关注一下小迪安全。 若有冒犯,麻烦私信移除。 默认有java基础。 文章目录 4. 小迪安全v2023笔记 javaEE应…

C++程序进阶学习

目录 引言 C内存分区 一、内存分区模型 二、 程序运行前 三、程序执行后 C引用 引用的语法 作用 本质 优点 C封装 C对象特性 C对象模型和this指针 C友元 C运算符重载 C继承 C多态 C文件 引言 看过我博客的朋友可能都了解这篇文章内容了,这篇博…

谷粒商城学习笔记-19-快速开发-逆向生成所有微服务基本CRUD代码

文章目录 一,使用逆向工程步骤梳理1,修改逆向工程的application.yml配置2,修改逆向工程的generator.properties配置3,以Debug模式启动逆向工程4,使用逆向工程生成代码5,整合生成的代码到对应的模块中 二&am…

FastAPI 学习之路(三十五)项目结构优化

之前我们创建的文件都是在一个目录中,但是在我们的实际开发中,肯定不能这样设计,那么我们去创建一个目录,叫models,大致如下。 主要目录是: __init__.py 是一个空文件,说明models是一个package…

2.GAP:通用访问协议

GAP的简单理解 GAP这个名字,直接翻译过来不好理解。 简单点可以理解为: 这是蓝牙设备在互联之前,过程中,第一个用于交流的协议。在代码上,会给这个协议实现,连接参数的设置,连接事件的实现&am…

maven高级1——一个项目拆成多个

把原来一个项目,拆成多个项目。 !!他们之间,靠接口通信。 以ssm整合好的项目为例: 如何看拆的ok不ok 只要compile通过就ok。 拆分pojo 先新建一个项目模块,再把内容复制进去。 拆分dao 1.和上面一样…

Unity之Text组件换行\n没有实现+动态中英互换

前因:文本中的换行 \n没有换行而是打印出来了,解决方式 因为unity会默认把\n替换成\\n 面板中使用富文本这个选项啊 没有用 m_text.text m_text.text.Replace("\\n", "\n"); ###动态中英文互译 using System.Collections; using…

牛客小白月赛98

骰子魔术 jackle 会拿出一枚骰子,骰子的表面分别写上了从 1∽5001\backsim 5001∽500 的数字,朋友会随便说一个 1∽5001\backsim 5001∽500 之间的点数,jackle 都能保证百分之百的掷出这个点数。 当然 jackle 有备而来,他准备了 …

代码随想录算法训练营Day62|冗余连接、冗余连接II

冗余连接 108. 冗余连接 (kamacoder.com) 考虑使用并查集&#xff0c;逐次将s、t加入并查集中&#xff0c;当发现并查集中find(u)和find(v)相同时&#xff0c;输出u和v&#xff0c;表示删除的边即可。 #include <iostream> #include <vector> using namespace s…

pytest使用报错(以及解决pytest所谓的“抑制print输出”)

1. 测试类的类名问题 #codingutf-8import pytestclass TestClass1:def setup(self) -> None:print(setup)def test_01(self) -> None:print(test_01111111111111111111111)def test_02(self) -> None:print(test_02)以上述代码为例&#xff0c;如果类名是Test开头&am…

maven7——(重要,构建项目)maven项目构建(命令)

Maven的常用命令管理项目的生命周期 clean命令 清除编译产生的target文件夹内容&#xff0c;可以配合相应命令在cmd中使用&#xff0c;如mvn clean package&#xff0c; mvn clean test D:\工作\公司培训-4班\day20\day20\untitled1>mvn clean compile命令 该命令可以…

苹果入局,AI手机或将实现“真智能”?

【潮汐商业评论/原创】 “AI应用智能手机不就是现在的AI手机。” 当被问到现阶段对AI手机的看法时&#xff0c;John如是说。“术业有专攻&#xff0c;那么多APP在做AI功能&#xff0c;下载用就是了&#xff0c;也用不着现在换个AI手机啊。” 对于AI手机&#xff0c;或许大多…

【搭建Nacos服务】centos7 docker从0搭建Nacos服务

前言 本次搭建基于阿里云服务器系统为&#xff08;CentOS7 Linux&#xff09;、Nacos&#xff08;2.0.3&#xff09;、Docker version 26.1.4 本次搭建基于一个新的云服务器 安装java yum install -y java-1.8.0-openjdk.x86_64安装驱动以及gcc等前置需要的命令 yum install …

设置DepthBufferBits和设置DepthStencilFormat的区别

1&#xff09;设置DepthBufferBits和设置DepthStencilFormat的区别 2&#xff09;Unity打包exe后&#xff0c;游戏内拉不起Steam的内购 3&#xff09;Unity 2022以上Profiler.FlushMemoryCounters耗时要怎么关掉 4&#xff09;用GoodSky资产包如何实现昼夜播发不同音乐功能 这是…

XCP协议介绍(二)

五、XCP命令简介 5.1 数据包简介 XCP的数据包分为两类&#xff1a;CTO(Command Transfer Object)与DTO(Data Transfer Object) CMD&#xff1a;指的是上位机下发给下位机的一些命令&#xff0c;比如连接命令FF&#xff0c;解锁&#xff0c;获取状态等一些和下位机交互的命令&…

MySQL 9.0 新功能概览

官方文档 https://dev.mysql.com/doc/refman/9.0/en/mysql-nutshell.html 时隔 6 年多&#xff0c;上周 Oracle 发布了 MySQL 最新的大版本 9.0。我们一起来看看新版本有哪些东西。 用 JavaScript 写存储过程 半年前已经单独介绍过 「虽迟但到&#xff01;MySQL 可以用 Java…

阿里云人工智能平台PAI论文入选OSDI ‘24

近日&#xff0c;阿里云人工智能平台PAI的论文《Llumnix: Dynamic Scheduling for Large Language Model Serving》被OSDI 24录用。论文通过对大语言模型&#xff08;LLM&#xff09;推理请求的动态调度&#xff0c;大幅提升了推理服务质量和性价比。 Llumnix是业界首个能灵活在…

顺序表算法题 -- 力扣

一、移除元素 移除元素 这个题让我们移除数组nums中值为val的元素&#xff0c;最后返回k&#xff08;不是val的元素个数&#xff09; 这样显然我们就不能再创建一个数组来解决这个问题了&#xff0c;只能另辟蹊径 思路&#xff1a;双指针 这里定义两个指针&#xff08;l1&…