机器学习基本概念,Numpy,matplotlib和张量Tensor知识进一步学习

机器学习一些基本概念:

监督学习

监督学习是机器学习中最常见的形式之一,它涉及到使用带标签的数据集来训练模型。这意味着每条训练数据都包含输入特征对应的输出标签。目标是让模型学会从输入到输出的映射,这样当给出新的未见过的输入时,模型可以做出准确的预测。

例子
  • 分类问题(如垃圾邮件检测,识别邮件是否为垃圾邮件)
  • 回归问题(如房价预测,预测连续值)

非监督学习

非监督学习用于没有标签的数据集,即只包含输入特征而没有对应的输出标签。目标通常是发现数据中的结构或模式,例如分组(聚类)或找到数据的低维度表示(降维)。

例子
  • 聚类(如顾客细分,将顾客分组)
  • 降维(如PCA,用于数据可视化或预处理)

强化学习

强化学习是另一种学习形式,其中智能体(agent)在一个环境中学习如何采取行动以最大化某种累积奖励。智能体与环境交互,执行动作,然后基于反馈(奖励或惩罚)调整其策略。

例子
  • 游戏玩家(如AlphaGo,下围棋)
  • 自动驾驶汽车(学习如何在道路上导航)

其他学习类型

除了上述三种主要的学习类型,还有其他的学习方法,例如:

  • 半监督学习:结合少量有标签数据和大量无标签数据来改善学习模型的性能。
  • 迁移学习:利用从一个领域学到的知识去解决另一个相关领域的问题。
  • 在线学习:模型在实时接收数据的同时进行学习,持续更新模型以适应新数据。

应用场景

这些学习方法在多个领域有广泛应用,比如计算机视觉、自然语言处理、推荐系统、生物信息学、金融分析等等。

Numpy

介绍:

这是一个强大的库,提供了大量的数学函数以及多维数组和矩阵运算的支持。它是许多其他科学计算库的基础,如Scipy、Pandas和Matplotlib。在深度学习中,Numpy常用于数据预处理和后处理。

具体代码:

矩阵转置:

import numpy as np
matrix=np.array([[9,3,2],[2,4,5],[8,7,9]])
transposed_matrix=matrix.T
print("Original Matrix:")
print(matrix)
print("\nTransposed Matrix:")
print(transposed_matrix)

matplotlib

介绍:这是一个绘图库,可以生成各种静态、动态、交互式的可视化图表。在数据分析和机器学习中,Matplotlib被用来可视化数据和模型的表现,帮助理解和调试。

具体代码:

import matplotlib.pyplot as plt
import numpy as np# 创建x值,这里使用numpy的linspace函数生成从0到10的50个均匀间隔的点
x = np.linspace(0, 10, 50)# 根据x值计算对应的y值
y = 2 * x + 1# 使用matplotlib绘制图形
plt.figure()  # 创建一个新的figure窗口
plt.plot(x, y, label='y = 2x + 1')  # 绘制x和y的线性关系
plt.title('Simple Linear Plot')  # 设置图形标题
plt.xlabel('x-axis')  # 设置x轴标签
plt.ylabel('y-axis')  # 设置y轴标签
plt.legend()  # 显示图例
plt.grid(True)  # 显示网格
plt.show()  # 展示图形

张量Tensor

当我们谈论机器学习和神经网络时,张量(Tensor)是一个非常重要的概念。理解张量对于理解神经网络如何处理和操作数据至关重要。让我来详细解释张量的相关知识。

张量的基本概念

  1. 张量是什么?

    • 在计算机科学和数学中,张量是多维数组的泛化。在PyTorch、TensorFlow等机器学习框架中,张量是这些框架中用于表示和操作数据的基本数据结构。它可以是一个标量(零维张量)、向量(一维张量)、矩阵(二维张量),甚至更高维的数据结构。
  2. 张量在神经网络中的作用

    • 数据存储和处理: 张量是神经网络处理数据的基本单位。神经网络的输入、输出、中间层的数据都以张量的形式存在。例如,一张彩色图像可以表示为一个三维张量,包括宽度、高度和RGB通道。
    • 加速计算: 张量的结构使得现代硬件(如GPU)能够高效地并行计算,从而加速神经网络的训练和推断过程。
    • 自动微分: 张量不仅仅是数据容器,还支持自动微分。这意味着在神经网络的反向传播过程中,张量可以追踪和记录梯度信息,帮助优化器更新模型参数。

张量的常见操作

  • 创建张量: 可以通过构造函数或特定的库函数(如PyTorch中的torch.tensor())来创建张量,初始化为特定的值或随机数。

  • 索引和切片: 可以像操作数组一样,在张量中获取特定位置的值或切片。

  • 数学运算: 张量支持各种数学运算,包括加法、乘法、矩阵乘法等。这些运算是神经网络的基础,用于权重更新和激活函数应用等。

  • 形状变换: 可以改变张量的形状,例如从一个三维张量变为二维,或者反之,这在神经网络的不同层之间传递数据时非常常见。

代码示例: 

1.创建张量
  • 使用torch.Tensor()从数据中创建张量。 
    import torch# 从列表创建张量
    tensor_data = [1, 2, 3, 4, 5]
    t = torch.Tensor(tensor_data)
    print(t)
    

  • 使用torch.arange()创建等差张量。
    # 创建等差张量
    t = torch.arange(1, 10, 2)
    print(t)
    

  • 使用torch.zeros()torch.ones()创建全零张量和全一张量。
    # 创建全零张量和全一张量
    zeros_tensor = torch.zeros(3, 3)
    ones_tensor = torch.ones(2, 2)
    print(zeros_tensor)
    print(ones_tensor)
    

2.张量的基本操作
  • 索引和切片:使用索引和切片访问和操作张量中的元素。
    t = torch.Tensor([1, 2, 3, 4, 5])# 索引操作
    print(t[0])  # 访问第一个元素
    print(t[2:4])  # 切片操作,获取第3到第4个元素# 修改元素值
    t[1] = 10
    print(t)
    

  • 张量运算:支持各种数学运算
    t1 = torch.Tensor([1, 2, 3])
    t2 = torch.Tensor([4, 5, 6])# 加法
    print(t1 + t2)# 矩阵乘法
    matrix1 = torch.Tensor([[1, 2], [3, 4]])
    matrix2 = torch.Tensor([[5, 6], [7, 8]])
    print(torch.matmul(matrix1, matrix2))# 创建一个示例矩阵
    A = torch.tensor([[1, 2, 3],[4, 5, 6]])# 使用transpose方法进行转置操作
    A_transposed = A.transpose(0, 1)  # 0和1表示维度的索引,即行和列的索引print("原始矩阵 A:")
    print(A)print("\n转置后的矩阵 A_transposed:")
    print(A_transposed)
    

  • 形状操作:改变张量的形状
    t = torch.arange(1, 10)
    reshaped_t = t.view(3, 3)  # 改变形状为3x3
    print(reshaped_t)
    

4.高级操作: 

  • 自动求导:张量可以跟踪其计算历史,支持自动求导。
    import torch# 创建一个张量并设置requires_grad=True来启用自动求导
    x = torch.tensor([2.0], requires_grad=True)# 定义计算图
    y = x**2 + 5*x# 自动计算梯度
    y.backward()# 打印出x的梯度
    print(x.grad)
    

  • GPU加速:可以将张量移动到GPU上加速计算。
    if torch.cuda.is_available():device = torch.device("cuda")t = torch.Tensor([1, 2, 3]).to(device)print(t)
    

部分运行结果

在神经网络中的应用示例

考虑一个简单的卷积神经网络(CNN)用于识别图像中的数字(如X和O):

  • 输入数据表示: 图像数据通常以张量的形式输入神经网络。一张256x256像素的彩色图像可以表示为一个形状为 [3, 256, 256] 的张量,其中3表示RGB通道数。

  • 网络参数表示: 神经网络的权重和偏置也是以张量的形式存储和更新的。这些参数张量的维度和形状决定了神经网络的结构和复杂度。

  • 计算过程: 在前向传播过程中,输入张量经过一系列层级的变换和激活函数应用,生成输出张量。这些过程中的数学运算和数据传递都是通过张量完成的。

总结

张量在神经网络中扮演了不可或缺的角色,它们不仅是数据的容器,还是神经网络操作和优化的核心。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/376843.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue学习day09-自定义指令、插槽

29、自定义指令 (1)概念:自己定义的指令,可以封装一些dom操作,扩展额外的功能。 (2)分类: 1)全局注册 2)局部注册 3)示例: 让表…

Android Studio启动报错:The emulator process for AVD Pixel_5_API_30 has terminated

Android Studio启动AVD报错: The emulator process for AVD Pixel_5_API_30 has terminated. 原因:安装时使用自定义安装后,修改了默认安装目录。 而avd文件默认在 C:\Users\用户名\.android 目录下。所以导致打开AVD时报错。 解决方法&am…

RABBITMQ的本地测试证书生成脚本

由于小程序要求必须访问wss的接口,因此需要将测试环境也切换到https,看了下官方的文档 RabbitMQ Web STOMP Plugin | RabbitMQ里面有这个信息 然后敲打GPT一阵子,把要求输入几个来回,得到这样一个脚本: generate_cer…

几何建模-Parasolid中GO功能使用

1.背景介绍 1.1 Parasolid和它的接口间关系 1.2 什么是GO GO全称是Graphical Output.你的程序需要在屏幕或者打印设备上显示模型数据时。在需要使用PK中的某个渲染函数时创建图形显示数据时,Parasolid会调用GO相关的函数。GO函数会输出绘图指令给你的应用程序提供…

主机安全-进程、命令攻击与检测

目录 概述反弹shell原理nc/dev/xxx反弹shell下载不落地反弹Shell各种语言反弹shell linux提权sudosuid提权mysql提权 Dnslog参考 概述 本文更新通过在主机(不含容器)上直接执行命令或启动进程来攻击的场景。检测方面以字节跳动的开源HIDS elkeid举例。每…

Nignx配置

Nginx配置之nginx.conf文件解析及配置 1、nginx.conf文件解析 user www-data; worker_processes auto; pid /run/nginx.pid; include /etc/nginx/modules-enabled/*.conf;events {worker_connections 768;# multi_accept on; }http {### Basic Settings###开启文件的高效传输…

Docker搭建kafka+zookeeper以及Springboot集成kafka快速入门

参考文章 【Docker安装部署KafkaZookeeper详细教程】_linux arm docker安装kafka-CSDN博客 Docker搭建kafkazookeeper 打开我们的docker的镜像源配置 vim /etc/docker/daemon.json 配置 { "registry-mirrors": ["https://widlhm9p.mirror.aliyuncs.com"…

全面升级的对象创建——抽象工厂模式(Python实现和JAVA实现)

1. 引言 大家好!在之前的文章中,我们探讨了简单工厂和工厂方法模式: 轻松创建对象——简单工厂模式(Python实现) 轻松创建对象——简单工厂模式(Java实现) 灵活多变的对象创建——工厂方法模式…

20240711每日消息队列-------------MQ消息的积压的折磨

目标 解决MQ消息的积压 背景 菜馆系统----------- 系统读取消息,处理业务逻辑,持久化订单和菜品数据,然后将其显示在菜品管理客户端上。 最初我们的用户基数很小,上线后的一段时间内,MQ消息通信还算顺利。 随着用户…

k8s(五)---名称空间

五、名称空间 名称空间是k8s划分不同工作空间的逻辑单位,是k8s资源逻辑隔离的机,。可以给不同的租户,不同的环境、不同的项目创建对应的命名空间。 1、查看名称空间 kubectl get ns kubectl get namespaces 此处展示了四个命名空间 2、管理名称空间 1…

Matlab-Simulink模型保存为图片的方法

有好多种办法将模型保存为图片,这里直接说经常用的 而且贴到Word文档中清晰、操作简单。 simulink自带有截图功能,这两种方法都可以保存模型图片。选择后直接就复制到截切板上了。直接去文档中粘贴就完事了。 这两个格式效果不太一样,第一种清…

[Java IO] 文件的概念与相关操作

一 概念 什么是文件? 文件就是保存数据的地方。 二 文件流 文件在程序中是以流的形式来操作的。 流——数据在数据源(文件)和程序(内存)之间经历的路径。 输入流:数据从数据源(文件&#…

算法学习day12(动态规划)

一、不同的二叉搜索树 二叉搜索树的性质:父节点比左边的孩子节点都大;比右边的孩子节点都小; 由图片可知,dp[3]是可以由dp[2]和dp[1]得出来的。(二叉搜索树的种类和根节点的val有关) 当val为1时,左边是一定没有节点的…

React18+Redux+antd 项目实战 JS

React18Reduxantd 项目实战 js Ant Design插件官网 Axios官网 (可配置请求拦截器和响应拦截器) JavaScript官网 Echarts官网 一、项目前期准备 1.创建新项目 hotel-manager npx create-react-app hotel-manager2.安装依赖 //安装路由 npm i react-router-domnpm i aixos /…

系统架构师考点--系统安全

大家好。今天我来总结一下系统安全相关的考点,这类考点每年都会考到,一般是在上午场客观题,占2-4分。 一、信息安全基础知识 信息安全包括5个基本要素:机密性、完整性、可用性、可控性与可审查性 (1)机密性:确保信息…

【机器学习理论基础】回归模型定义和分类

定义 回归分析是研究自变量与因变量之间数量变化关系的一种分析方法,它主要是通过因变量 Y Y Y与影响它的自变量 X i X_i Xi​ 之间的回归模型,衡量自变量 X i X_i Xi​ 对因变量 Y Y Y 的影响能力的,进而可以用来预测因变量Y的发展趋势。…

基于Python/MATLAB长时间序列遥感数据处理及在全球变化、植被物候提取、植被变绿与生态系统固碳分析、生物量估算与趋势分析应用

植被是陆地生态系统中最重要的组分之一,也是对气候变化最敏感的组分,其在全球变化过程中起着重要作用,能够指示自然环境中的大气、水、土壤等成分的变化,其年际和季节性变化可以作为地球气候变化的重要指标。此外,由于…

Python3极简教程(一小时学完)下

目录 PEP8 代码风格指南 知识点 介绍 愚蠢的一致性就像没脑子的妖怪 代码排版 缩进 制表符还是空格 每行最大长度 空行 源文件编码 导入包 字符串引号 表达式和语句中的空格 不能忍受的情况 其他建议 注释 块注释 行内注释 文档字符串 版本注记 命名约定 …

WPF学习(4) -- 数据模板

一、DataTemplate 在WPF(Windows Presentation Foundation)中,DataTemplate 用于定义数据的可视化呈现方式。它允许你自定义如何展示数据对象,从而实现更灵活和丰富的用户界面。DataTemplate 通常用于控件(如ListBox、…

鸿蒙语言基础类库:【@ohos.util (util工具函数)】

util工具函数 说明: 本模块首批接口从API version 7开始支持。后续版本的新增接口,采用上角标单独标记接口的起始版本。开发前请熟悉鸿蒙开发指导文档:gitee.com/li-shizhen-skin/harmony-os/blob/master/README.md点击或者复制转到。 该模块…