MySQL 锁机制详解

MySQL 锁机制详解


5.1 概述

锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中,除传统的计算资源(CPU、 RAM、I/O)的争用以外,数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性、有 效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素。从这个 角度来说,锁对数据库而言显得尤其重要,也更加复杂。

MySQL中的锁,按照锁的粒度分,分为以下三类:

1.全局锁:锁定数据库中的所有表。

2.表级锁:每次操作锁住整张表。

3.行级锁:每次操作锁住对应的行数据。

(个人总结:MySQL 锁用于管理并发访问,确保数据一致性。根据粒度分为:全局锁表级锁行级锁。锁的粒度越小,并发性能越高,但管理复杂度也越高。)


5.2 全局锁

5.2.1 介绍

全局锁就是对整个数据库实例加锁,加锁后整个实例就处于只读状态,后续的DML的写语句,DDL语句,已经更新操作的事务提交语句都将被阻塞。

其典型的使用场景是做全库的逻辑备份,对所有的表进行锁定,从而获取一致性视图,保证数据的完整性。

(个人总结:全局锁锁定整个数据库实例,常用于全库逻辑备份。)

为什么全库逻辑备份,就需要加全就锁呢?

A. 我们一起先来分析一下不加全局锁,可能存在的问题。 假设在数据库中存在这样三张表: tb_stock 库存表,tb_order 订单表,tb_orderlog 订单日 志表。

在这里插入图片描述

在进行数据备份时,先备份了tb_stock库存表。

然后接下来,在业务系统中,执行了下单操作,扣减库存,生成订单(更新tb_stock表,插入 tb_order表)。

然后再执行备份 tb_order表的逻辑。

业务中执行插入订单日志操作。

最后,又备份了tb_orderlog表。

此时备份出来的数据,是存在问题的。因为备份出来的数据,tb_stock表与tb_order表的数据不一 致(有最新操作的订单信息,但是库存数没减)。

那如何来规避这种问题呢? 此时就可以借助于MySQL的全局锁来解决。

B. 再来分析一下加了全局锁后的情况

在这里插入图片描述

对数据库进行进行逻辑备份之前,先对整个数据库加上全局锁,一旦加了全局锁之后,其他的DDL、 DML全部都处于阻塞状态,但是可以执行DQL语句,也就是处于只读状态,而数据备份就是查询操作。 那么数据在进行逻辑备份的过程中,数据库中的数据就是不会发生变化的,这样就保证了数据的一致性 和完整性。

面试重点:全局锁会导致所有写操作阻塞,需谨慎使用。

5.2.2 语法

-- 加全局锁(逻辑备份前加上全局锁)
FLUSH TABLES WITH READ LOCK;-- 数据备份(此时数据库只能读DQL,不能写DDL,DML)
mysqldump  -uroot –p1234  itcast > itcast.sql-- 释放锁(逻辑备份后释放全局锁)
UNLOCK TABLES;

5.2.3 特点

数据库中加全局锁,是一个比较重的操作,存在以下问题:

  1. 如果在主库上备份,那么在备份期间都不能执行更新,业务基本上就得停摆。

    2.如果在从库上备份,那么在备份期间从库不能执行主库同步过来的二进制日志(binlog),会导 致主从延迟

在InnoDB引擎中,我们可以在备份时加上参数 --single-transaction 参数来完成不加锁的一致 性数据备份。(底层由快照读实现)

 mysqldump  --single-transaction  -uroot –p123456  itcast > itcast.sql

个人总结:

  • 阻塞所有写操作(DML/DDL)。
  • 若使用 mysqldump 备份,建议配合 --single-transaction 参数(仅对支持事务的引擎如 InnoDB 有效)。

5.3 表级锁

5.3.1 介绍

表级锁,每次操作锁住整张表。锁定粒度大,发生锁冲突的概率最高,并发度最低。应用在MyISAM、 InnoDB、BDB等存储引擎中。

对于表级锁,主要分为以下三类:

1.表锁

2.元数据锁(meta data lock,MDL)

3.意向锁

5.3.2 表锁

对于表锁,分为两类:

  • 表共享读锁(read lock)

  • 表独占写锁(write lock)

语法:

  • 加锁:lock tables 表名… read/write。

  • 释放锁:unlock tables / 客户端断开连接 。

  • 显式加锁
LOCK TABLES table_name READ;  -- 读锁(共享锁)
LOCK TABLES table_name WRITE; -- 写锁(排他锁)
UNLOCK TABLES;                -- 释放锁
  • 隐式加锁:执行 DDL 语句(如 ALTER TABLE)时自动加锁。

读锁和写锁的特点是什么?

A. 读锁 (只能读,不能写;不会阻塞其他的客户端的读,但是会阻塞其他客户端的写)

在这里插入图片描述

左侧为客户端一,对指定表加了读锁,不会影响右侧客户端二的读,但是会阻塞右侧客户端的写。

测试:

在这里插入图片描述

如果对多个表使用read锁,将不能进行DML和DDL语句,但是使用unlock tables之后,所有的表都将解锁。

B. 写锁(自己客户端既能读也能写,但是其他客户端不能读也不能写)

在这里插入图片描述

左侧为客户端一,对指定表加了写锁,会阻塞右侧客户端的读和写。

测试:

在这里插入图片描述

(右侧会阻塞到左侧表锁释放为止)

结论: 读锁不会阻塞其他客户端的读,但是会阻塞写。写锁既会阻塞其他客户端的读,又会阻塞 其他客户端的写。

5.3.3 元数据锁(MDL)

meta data lock , 元数据锁,简写MDL。

MDL加锁过程是系统自动控制,无需显式使用,在访问一张表的时候会自动加上。MDL锁主要作用是维护表元数据(简单理解为表结构)的数据一致性,在表上有活动事务的时候,不可以对元数据进行写入操作。为了避免DML与 DDL冲突,保证读写的正确性。

这里的元数据,可以简单理解为就是一张表的表结构。 也就是说,某一张表涉及到未提交的事务 时,是不能够修改这张表的表结构的。

在MySQL5.5中引入了MDL,当对一张表进行增删改查的时候,加MDL读锁(共享);当对表结构进行变更操作的时候,加MDL写锁(排他)。

常见的SQL操作时,所添加的元数据锁:(shared_read,shared_write,exclusive)

在这里插入图片描述

当执行SELECT、INSERT、UPDATE、DELETE等语句时,添加的是元数据共享锁(SHARED_READ / SHARED_WRITE),之间是兼容的。

在这里插入图片描述

当执行SELECT语句时,添加的是元数据共享锁(SHARED_READ),会阻塞元数据排他锁 (EXCLUSIVE),之间是互斥的。

在这里插入图片描述

我们可以通过下面的SQL,来查看数据库中的元数据锁的情况:

select object_type,object_schema,object_name,lock_type,lock_duration from 
performance_schema.metadata_locks;

我们在操作过程中,可以通过上述的SQL语句,来查看元数据锁的加锁情况。

在这里插入图片描述

  • 自动管理:访问表时加 MDL 读锁,修改表结构时加 MDL 写锁。

  • 问题:长事务未提交时,修改表结构会阻塞(常见面试题)。

    ​ DML操作会加shared_read锁,DDL操作会加exclusive锁,如果先执行DML语句,在执行DDL语句,DDL语句就会被阻塞,因为shared_read锁和exclusive锁二者是不兼容的,DDL语句如果想要运行就得等到shared_read锁的释放(提交事务)。

5.3.4 意向锁

1). 介绍 为了避免DML在执行时,加的行锁与表锁的冲突,在InnoDB中引入了意向锁,使得表锁不用检查每行 数据是否加锁,使用意向锁来减少表锁的检查。

假如没有意向锁,客户端一对表加了行锁后,客户端二如何给表加表锁呢,来通过示意图简单分析一 下:

首先客户端一,开启一个事务,然后执行DML操作,在执行DML语句时,会对涉及到的行加行锁。

在这里插入图片描述

当客户端二,想对这张表加表锁时,会检查当前表是否有对应的行锁,如果没有,则添加表锁,此时就 会从第一行数据,检查到最后一行数据,效率较低。

在这里插入图片描述

有了意向锁之后 : 客户端一,在执行DML操作时,会对涉及的行加行锁,同时也会对该表加上意向锁。

在这里插入图片描述

线程A首先开启事务,然后再执行update,执行update之前它会把操作的那一行加上行锁,然后紧接着会对操作的那张表加上一个意向锁。此时如果B想要来对这张表加上表锁,它会首先检查这张表是否有意向锁,通过是否有意向锁来决定这张表的表锁能否增加成功。如果当前表的意向锁和当前所要加的表锁是兼容的,就直接加锁;如果是不兼容的就会处于阻塞状态。

2). 分类

  • 意向共享锁(IS): 由语句select … lock in share mode添加 。 与表锁共享锁 (read)兼容,与表锁排他锁(write)互斥。

  • 意向排他锁(IX): 由insert、update、delete、select…for update添加 。与表锁共享锁(read)及排他锁(write)都互斥,意向锁之间不会互斥。

一旦事务提交了,意向共享锁、意向排他锁,都会自动释放。

可以通过以下SQL,查看意向锁及行锁的加锁情况:

select object_schema,object_name,index_name,lock_type,lock_mode,lock_data from 
performance_schema.data_locks;

演示:

A. 意向共享锁与表读锁是兼容的

在这里插入图片描述

B. 意向排他锁与表读锁、写锁都是互斥的

在这里插入图片描述

意向锁就是行锁和表锁的关系:

我读加的行锁,你能读但不能写;

我写加的行锁,你不能读也不能写。

抓重点这些锁都是为了并发时数据不出错,以及提升性能用的。理解这么做的原理,而不是记概念。

(例如:写锁会导致其他客户端读和写读阻塞的原因可以理解为:一个客户端在写操作并在事务未提交时,其他客户端是不能进行对该表的操作的,目的防止数据产生的不一致性。)

  • 作用:快速判断表中是否有行级锁,避免逐行检查。
  • 类型
    • 意向共享锁(IS):事务准备读取某些行。
    • 意向排他锁(IX):事务准备修改某些行。

5.4 行级锁

5.4.1 介绍

行级锁,每次操作锁住对应的行数据。锁定粒度最小,发生锁冲突的概率最低,并发度最高。应用在 InnoDB存储引擎中。

InnoDB的数据是基于索引组织的,行锁是通过对索引上的索引项加锁来实现的,而不是对记录加的锁。对于行级锁,主要分为以下三类:

  • 行锁(Record Lock):锁定单个行记录的锁,防止其他事务对此行进行update和delete。在 RC、RR隔离级别下都支持。

    复习:RR是可重复读repeatable read RC是read committed

在这里插入图片描述

  • 间隙锁(Gap Lock):锁定索引记录间隙(不含该记录),确保索引记录间隙不变,防止其他事 务在这个间隙进行insert,产生幻读。在RR隔离级别下都支持。

    (例如:12-16间的间隙,16-18的间隙)

在这里插入图片描述

  • 临键锁(Next-Key Lock):行锁和间隙锁组合,同时锁住数据,并锁住数据前面的间隙Gap。 在RR隔离级别下支持。

锁定单行或多行,InnoDB 引擎支持
面试重点:行级锁基于索引实现,无索引时会退化为表锁!

5.4.2 行锁

1). 介绍 InnoDB实现了以下两种类型的行锁:

  • 共享锁(S):允许一个事务去读一行,阻止其他事务获得相同数据集的排它锁。

(共享锁和共享锁之间是兼容的,共享锁和排他锁之间是互斥的)

  • 排他锁(X):允许获取排他锁的事务更新数据,阻止其他事务获得相同数据集的共享锁和排他 锁。

    (如果一个事务获取到了某一行的排他锁,那么其他的事务就不能再获取这一行的共享锁和排他锁,相应的也就无法对着一行进行读和写。)

两种行锁的兼容情况如下:

在这里插入图片描述

常见的SQL语句,在执行时,所加的行锁如下:

在这里插入图片描述

2). 演示

默认情况下,InnoDB在 REPEATABLE READ事务隔离级别运行,InnoDB使用 next-key 锁进行搜 索和索引扫描,以防止幻读。

针对唯一索引进行检索时,对已存在的记录进行等值匹配时,将会自动优化为行锁。

InnoDB的行锁是针对于索引加的锁,不通过索引条件检索数据,那么InnoDB将对表中的所有记 录加锁,此时 就会升级为表锁。 可以通过以下SQL,查看意向锁及行锁的加锁情况:

select object_schema,object_name,index_name,lock_type,lock_mode,lock_data from 
performance_schema.data_locks;

A. 普通的select语句,执行时,不会加锁。

在这里插入图片描述

B. select…lock in share mode,加共享锁,共享锁与共享锁之间兼容。

在这里插入图片描述

共享锁与排他锁之间互斥。

在这里插入图片描述

客户端一获取的是id为1这行的共享锁,客户端二是可以获取id为3这行的排它锁的,因为不是同一行 数据。 而如果客户端二想获取id为1这行的排他锁,会处于阻塞状态,以为共享锁与排他锁之间互 斥。

C. 排它锁与排他锁之间互斥

在这里插入图片描述

当客户端一,执行update语句,会为id为1的记录加排他锁; 客户端二,如果也执行update语句更 新id为1的数据,也要为id为1的数据加排他锁,但是客户端二会处于阻塞状态,因为排他锁之间是互 斥的。 直到客户端一,把事务提交了,才会把这一行的行锁释放,此时客户端二,解除阻塞。

D. 无索引行锁升级为表锁

stu表中数据如下:

在这里插入图片描述

我们在两个客户端中执行如下操作:

在这里插入图片描述

在客户端一中,开启事务,并执行update语句,更新name为Lily的数据,也就是id为19的记录 。 然后在客户端二中更新id为3的记录,却不能直接执行,会处于阻塞状态,为什么呢? 原因就是因为此时,客户端一,根据name字段进行更新时,name字段是没有索引的,如果没有索引, 此时行锁会升级为表锁(因为行锁是对索引项加的锁,而name没有索引)。

接下来,我们再针对name字段建立索引,索引建立之后,再次做一个测试:

在这里插入图片描述

此时我们可以看到,客户端一,开启事务,然后依然是根据name进行更新。而客户端二,在更新id为3 的数据时,更新成功,并未进入阻塞状态。 这样就说明,我们根据索引字段进行更新操作,就可以避免行锁升级为表锁的情况。

补充:InnoDB对有索引的字段(where之后的字段),加行锁,没索引的字段加表锁。

5.4.3 间隙锁 & 临键锁

默认情况下,InnoDB在 REPEATABLE READ事务隔离级别运行,InnoDB使用 next-key 锁进行搜索和索引扫描,以防止幻读。

(**注意:RR无法解决幻读问题,如果系统采用的数据库不是 MySQL,或者使用的存储引擎不支持 Next-Key Locking,**那么 RR 隔离级别可能无法防止幻读。所以这块说防止幻读是正确的!)

  • 索引上的等值查询(唯一索引),给不存在的记录加锁时, 优化为间隙锁 。

  • 索引上的等值查询(非唯一普通索引),向右遍历时最后一个值不满足查询需求时,next-key lock 退化为间隙锁。

  • 索引上的范围查询(唯一索引)–会访问到不满足条件的第一个值为止。

(唯一索引上等值查询insert才会是行锁,其它形式的查询,就会变成这几种情况,也就是一开始就是临键锁,而不是行锁)

注意:间隙锁唯一目的是防止其他事务插入间隙。间隙锁可以共存,一个事务采用的间隙锁不会 阻止另一个事务在同一间隙上采用间隙锁。

示例演示 A. 索引上的等值查询(唯一索引),给不存在的记录加锁时, 优化为间隙锁 。

在这里插入图片描述

B. 索引上的等值查询(非唯一普通索引),向右遍历时最后一个值不满足查询需求时,next-key lock 退化为间隙锁。

介绍分析一下:

我们知道InnoDB的B+树索引,叶子节点是有序的双向链表。 假如,我们要根据这个二级索引查询值 为18的数据,并加上共享锁,我们是只锁定18这一行就可以了吗? 并不是,因为是非唯一索引,这个 结构中可能有多个18的存在,所以,在加锁时会继续往后找,找到一个不满足条件的值(当前案例中也 就是29)。此时会对18加临键锁,并对29之前的间隙加锁。

间隙锁是开区间,临建锁是左开右闭的
在这里插入图片描述

在这里插入图片描述

C. 索引上的范围查询(唯一索引)–会访问到不满足条件的第一个值为止。

在这里插入图片描述

查询的条件为id>=19,并添加共享锁。 此时我们可以根据数据库表中现有的数据,将数据分为三个部 分:

[19]

(19,25]

(25,+∞]

所以数据库数据在加锁是,就是将19加了行锁,25的临键锁(包含25及25之前的间隙),正无穷的临 键锁(正无穷及之前的间隙)。

小结:

  • 间隙锁(Gap Lock)锁定两条索引记录间的间隙,不包含数据记录,解决幻读问题(设计这个锁的目的)。
  • 临键锁(Next-Key Lock)两条索引的记录和间隙,(可以简单理解为行锁和间隙锁的组合)锁定左开右闭区间。
    示例
-- 锁定 id ∈ (5, 10] 的范围
SELECT * FROM table WHERE id > 5 AND id < 10 FOR UPDATE;

总结

锁类型特点使用场景面试重点
全局锁锁全库,阻塞写操作全库备份影响业务,需谨慎使用
表级锁粒度大,并发低DDL 操作MDL 锁阻塞问题
行级锁粒度小,并发高,基于索引高并发事务间隙锁解决幻读
意向锁协调表级锁和行级锁提高锁冲突检测效率作用及类型(IS/IX)

1.概述

在并发访问时,解决数据访问的一致性、有效性问题
全局锁、表级锁、行级锁

2.全局锁

对整个数据库实例加锁,加锁后整个实例就处于只读状态
性能较差,数据逻辑备份时使用

3.表级锁

操作锁住整张表,锁定粒度大,发生锁冲突的概率高
表锁、元数据锁、意向锁

4.行级锁

操作锁住对应的行数据,锁定粒度最小,发生锁冲突的概率最低
行锁、间隙锁、临键锁

思维导图

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/38651.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

常见中间件漏洞攻略-Apache篇

漏洞名称&#xff1a;Apache HTTP Server 路径穿越漏洞-CVE-2021-41773 第一步&#xff1a;拉取环境、启动环境 #拉取环境 docker pull blueteamsteve/cve-2021-41773:no-cgidhttp://121.40.229.129:8080#启动环境 docker run -dit -p 8080:80 blueteamsteve/cve-2021-41773:n…

站群服务器是什么意思呢?

站群服务器是一种专门为托管和管理多个网站而设计的服务器&#xff0c;其核心特点是为每个网站分配独立的IP地址。这种服务器通常用于SEO优化、提高网站权重和排名&#xff0c;以及集中管理多个网站的需求。以下是站群服务器的详细解释&#xff1a; 一、站群服务器的定义 站群…

Excel 小黑第22套

对应大猫22 新建一行&#xff0c;输入第一个人名字&#xff0c; 填充 -快速填充 修改员工编号&#xff08;1—001&#xff09;&#xff1a;选中所有员工编号&#xff0c;开始 -数据组 -自定义数字格式 000 在所有空表格单元格中输入数字0&#xff1a;选中修改的表格范围&#…

多传感器融合 SLAM LVI-SAM

目录 LVI-SAM 简介 A. 系统概述 B. 视觉惯导系统 C.雷达惯导系统 LVI-SAM 安装编译 编译 LVI-SAM 常见问题 LVI-SAM 工程化建议 LVI-SAM 简介 源码地址:https://github.com/TixiaoShan/LVI-SAM 如无法下载,换用 gitee 版本:https://gitee.com/inf_lee/LVI-SAM 改进…

Linux shell脚本3-if语句、case语句、for语句、while语句、until语句、break语句、continue语句,格式说明及程序验证

目录 1.if 控制语句 1.1 if 语句格式 1.2 程序验证 2.case语句 2.1case语句格式 2.2程序验证 2.2.1 终端先执行程序&#xff0c;在输入一个数 2.2.2 终端执行程序时同时输入一个预设变量 2.2.3 case带有按位或运算和通配符匹配 3.for语句 3.1for语句格式 3.2程序验…

图解模糊推理过程(超详细步骤)

我们前面已经讨论了三角形、梯形、高斯型、S型、Z型、Π型6种隶属函数&#xff0c;下一步进入模糊推理阶段。 有关六种隶属函数的特点在“Pi型隶属函数&#xff08;Π-shaped Membership Function&#xff09;的详细介绍及python示例”都有详细讲解&#xff1a;https://lzm07.b…

001-JMeter的安装与配置

1.前期准备 下载好JMeter : https://jmeter.apache.org/download_jmeter.cgi 下载好JDK : :Java Downloads | Oracle 中国 下载图中圈蓝的JMeter和JDK就行&#xff0c;让它边下载&#xff0c;我们边往下看 2.为什么要下载并安装JDK ? JMeter 是基于 Java 开发的工具&#…

英伟达有哪些支持AI绘画的 工程

英伟达在AI绘画领域布局广泛&#xff0c;其自研工具与第三方合作项目共同构建了完整的技术生态。以下是其核心支持AI绘画的工程及合作项目的详细介绍&#xff1a; 一、英伟达自研AI绘画工具 1. GauGAN系列 技术特点&#xff1a;基于生成对抗网络&#xff08;GAN&#xff09;&…

Netty源码—4.客户端接入流程二

大纲 1.关于Netty客户端连接接入问题整理 2.Reactor线程模型和服务端启动流程 3.Netty新连接接入的整体处理逻辑 4.新连接接入之检测新连接 5.新连接接入之创建NioSocketChannel 6.新连接接入之绑定NioEventLoop线程 7.新连接接入之注册Selector和注册读事件 8.注册Rea…

2025.3.17-2025.3.23学习周报

目录 摘要Abstract1 文献阅读1.1 动态图邻接矩阵1.2 总体框架1.2.1 GCAM1.2.2 输出块 1.3 实验分析 总结 摘要 在本周阅读的文献中&#xff0c;作者提出了一种名为TFM-GCAM的模型。TFM-GCAM模型的创新主要分为两部分&#xff0c;一部分是交通流量矩阵的设计&#xff0c;TFM-GC…

生活电子类常识——搭建openMauns工作流+搭建易犯错解析

前言 小白一句话生成一个网站&#xff1f;小白一句话生成一个游戏&#xff1f;小白一句话生成一个ppt?小白一句话生成一个视频&#xff1f; 可以 原理 总体的执行流程是 1&#xff0c;用户下达指令 2&#xff0c;大模型根据用户指令&#xff0c;分解指令任务为多个细分步骤…

深入解析 Uniswap:自动做市商模型的数学推导与智能合约架构

目录 1. 自动做市商&#xff08;AMM&#xff09;模型的数学推导1.1 恒定乘积公式推导1.2 价格影响与滑点 2. Uniswap 智能合约架构解析2.1 核心合约&#xff08;Core&#xff09;2.1.1 工厂合约&#xff08;Factory&#xff09;2.1.2 交易对合约&#xff08;Pair&#xff09; 2…

高频面试题(含笔试高频算法整理)基本总结回顾20

干货分享&#xff0c;感谢您的阅读&#xff01; &#xff08;暂存篇---后续会删除&#xff0c;完整版和持续更新见高频面试题基本总结回顾&#xff08;含笔试高频算法整理&#xff09;&#xff09; 备注&#xff1a;引用请标注出处&#xff0c;同时存在的问题请在相关博客留言…

生成模型速通(Diffusion,VAE,GAN)

基本概念 参考视频https://www.bilibili.com/video/BV1re4y1m7gb/?spm_id_from333.337.search-card.all.click&vd_sourcef04f16dd6fd058b8328c67a3e064abd5 生成模型其实是主要是依赖概率分布&#xff0c;对输入特征的概率密度函数建模 隐空间&#xff08;latent space)…

Android在kts中简单使用AIDL

Android在kts中简单使用AIDL AIDL相信做Android都有所了解&#xff0c;跨进程通信会经常使用&#xff0c;这里就不展开讲解原理跨进程通信的方式了&#xff0c;最近项目换成kts的方式&#xff0c;于是把aidl也换成了统一的方式&#xff0c;其中遇到了很多问题&#xff0c;这里…

学习本地部署DeepSeek的过程(基于ollama)

DeepSeek除了支持在线调用服务接口外&#xff0c;还支持本地部署后调用本地服务&#xff0c;这样的好处是不需要api key&#xff0c;且资源独占&#xff0c;还能训练个人知识库。本文学习并记录本地部署DeepSeek的过程。   参考文献3中列出了不同模型对于电脑硬件的要求&…

文献分享: ColXTR——将ColBERTv2的优化引入ColXTR

1. ColXTR \textbf{1. ColXTR} 1. ColXTR原理 1.1. ColBERTv2 \textbf{1.1. ColBERTv2} 1.1. ColBERTv2概述 1.1.1. \textbf{1.1.1. } 1.1.1. 训练优化 1️⃣难负样本生成 初筛&#xff1a;基于 BM-25 \text{BM-25} BM-25找到可能的负样本重排&#xff1a;使用 KL \text{KL} KL…

Altium Designer数模电学习笔记

模电 电容 **退耦&#xff1a;**利用通交阻直&#xff0c;将看似直流的信号中的交流成分滤除 &#xff08;一般用在给MPU供电&#xff0c;尽量小一些&#xff0c;10nf~100nf~1uf以下&#xff09; **滤波&#xff1a;**也可以理解为给电容充电&#xff0c;让电容在电平为低时…

从指令集鸿沟到硬件抽象:AI 如何重塑手机与电脑编程语言差异——PanLang 原型全栈设计方案与实验性探索1

AI 如何跨越指令集鸿沟&#xff1f;手机与电脑编程语言差异溯源与统一路径——PanLang 原型全栈设计方案与实验性探索1 文章目录 AI 如何跨越指令集鸿沟&#xff1f;手机与电脑编程语言差异溯源与统一路径——PanLang 原型全栈设计方案与实验性探索1前言一、手机与电脑编程语言…

python 实现一个简单的window 任务管理器

import tkinter as tk from tkinter import ttk import psutil# 运行此代码前&#xff0c;请确保已经安装了 psutil 库&#xff0c;可以使用 pip install psutil 进行安装。 # 由于获取进程信息可能会受到权限限制&#xff0c;某些进程的信息可能无法获取&#xff0c;代码中已经…