我出一道面试题,看看你能拿 3k 还是 30k!

大家好,我是程序员鱼皮。欢迎屏幕前的各位来到今天的模拟面试现场,接下来我会出一道经典的后端面试题,你只需要进行 4 个简单的选择,就能判断出来你的水平是新手(3k)、初级(10k)、中级(15k)还是高级(30k)!

请听题:

题目

MySQL 数据库中的 count(1)、count(*)、count(字段)有什么区别?

在面试鸭上查看

请回答

1、它们在功能上有区别么?

A:有区别

B:没区别

答案

有区别。虽然在 MySQL 中,count(*)、count(1) 和 count(字段名) 都是用来 统计行数的聚合函数

但 count(*) 和 count(1) 会统计表中所有行的数量,包括 null 值(不会忽略任何一行数据);而 count(字段名) 只会统计指定字段不为 null 的行数。

恭喜答对的朋友,3k 的 offer 到手啦!

2、count(*) 和 count(1) 谁更快?

A:count(*)

B:count(1)

C:没区别

答案

效率一致,没区别。

关于 count(1) 和 count(*) 谁更快的问题,网上众说纷纭,如果背了不专业的八股文,可能答案就选错咯~

有点经验的程序员,在遇到不确定的问题时,当然要去源头亲自求证,得去看官网怎么说。如图:

官网表示 There is no performance difference ,即二者没有性能上的区别!

对于 count(字段) 的查询就是全表扫描,正常情况下它还需要判断字段是否是 null 值,因此理论上会比 count(1) 和 count(*) 慢。

但是如果字段不为 null,例如是主键或具有非空约束,那么理论上性能也差不多。而且本质上它们的统计功能不一样,在需要统计 null 的时候,只能用 count(1) 和 count(*),不需要统计 null 的时候只能用 count(字段),所以也不用太纠结性能问题。

恭喜答对的朋友,10k 的 offer 到手啦!

3、用 count(*) 统计有千万条记录的表的总数据量,快不快?

A:快

B:慢

C:其他

答案

这是一道简单的场景题,有经验的程序员,本能地会想到 具体情况具体分析

MySQL 有 2 个主流的存储引擎 MyISAM 和 InnoDB。

在 MyISAM 引擎中,有一个内部计数器来维护表的记录数,查询时可以直接返回表的行数,而无需扫描整个表,所以 count(*) 非常快。

但是在 InnoDB 引擎中无法维护记录总数,需要扫描整个表,所以表越大、记录越多,count(*) 就越慢。

为什么 InnoDB 引擎不维护记录总数呢?因为它支持行锁,会有很多并发修改表数据的操作,难以维护总数,还会带来额外的性能开销;而 MyISAM 只有表锁,对单个表的修改串行执行,所以能维护总数。所以要针对业务场景选择不同的 MySQL 引擎。

恭喜答对的朋友,15k 的 offer 到手啦!

4、InnoDB 引擎中,count(id) 和 count(二级索引) 哪个成本更低?

A:count(id)

B:count(二级索引)

C:其他

答案

count(二级索引) 通常成本更低。是不是没想到?

这是对上一问的进一步追问,虽然 InnoDB 引擎中 count(*) 统计总数性能不高,但它也针对这个操作进行了一定的优化。

id 通常是主键索引,在 InnoDB 中,主键索引是聚簇索引,它存储了实际的数据行。执行 count 时,InnoDB 需要遍历整个聚簇索引来统计行数。

二级索引是指存储了索引列和主键列的指针,而不包含实际的数据行。因此,二级索引相对来说更小。执行 count 时,InnoDB 只需要遍历这个较小的二级索引,而不是整个聚簇索引,需要读取的数据页更少,所以成本更低。

当然,理论归理论,具体情况具体分析,具体的性能差异取决于索引的大小和表的结构,可以用 explain 语句查看查询计划和成本。

恭喜答对的朋友,30k 的 offer 到手啦!

哦不对,恭喜摸到了 30k 的门槛,继续努力,说不定下一个技术专家就是你~

最后

通过这道题目可以发现,其实面试的时候,很多题目都是可以深挖的,挖的越深,越能体现出候选人的水平。

有同学表示:自己面试题目都答上来了,为啥还是通过不了?

别灰心,可能只是差点儿运气,同场面试有同学比你答的更深、表达更流畅罢了。

不管怎么样,大家在准备面试八股文的时候,有时间的话,多思考一点、再深入一点,自己也能学到很多东西。欢迎多到我们的 面试刷题神器 - 面试鸭 上看看。

你答对了几问呢?欢迎大家在评论区留言~

更多

💻 编程学习交流:编程导航
📃 简历快速制作:老鱼简历
✏️ 面试刷题神器:面试鸭

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/386937.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

4 款最佳 C# 无头浏览器

摘要: 在当今大数据时代,高效的数据采集成为众多项目的关键一环。对于偏好C#语言的开发者而言,无头浏览器是实现网页自动化交互、数据抓取的强大工具。本文将深入探讨四款顶尖的C#无头浏览器库,分析它们的特性和应用场景&#xf…

怎么把C盘分成两个盘?让C盘分区更简单,赶快试试!

在日常使用电脑的过程中,有时我们可能希望将C盘分割成两个独立的分区,以便更好地管理文件和数据。这种操作需要谨慎进行,因为错误的分区操作可能导致数据丢失。那么,我们该怎么把C盘分成两个盘呢?下面,我将…

lua 游戏架构 之 游戏 AI (六)ai_auto_skill

定义一个为ai_auto_skill的类,继承自ai_base类。ai_auto_skill类的目的是在AI自动战斗模式下,根据配置和条件自动选择并使用技能。 lua 游戏架构 之 游戏 AI (一)ai_base-CSDN博客文章浏览阅读379次。定义了一套接口和属性&#…

vue3在元素上绑定自定义事件弹出虚拟键盘

最近开发中遇到一个需求: 焊接机器人的屏幕上集成web前端网页, 但是没有接入键盘。这就需要web端开发一个虚拟键盘,在网上找个很多虚拟键盘没有特别适合,索性自己写个简单的 图片: 代码: (代码可能比较垃圾冗余,也没时间优化,凑合看吧) 第一步:创建键盘组件 为了方便使用…

3.2.微调

微调 ​ 对于一些样本数量有限的数据集,如果使用较大的模型,可能很快过拟合,较小的模型可能效果不好。这个问题的一个解决方案是收集更多数据,但其实在很多情况下这是很难做到的。 ​ 另一种方法就是迁移学习(transfer learning…

c++如何理解多态与虚函数

目录 **前言****1. 何为多态**1.1 **编译时多态**1.1.1 函数重载1.1.2 模板 **1.2 运行时多态****1.2.1 虚函数****1.2.2 为什么要用父类指针去调用子类函数** **2. 注意****2.1 基类的析构函数应写为虚函数****2.2 构造函数不能设为虚函数** **本文参考** 前言 在学习 c 的虚…

打造重庆市数字化教育“新名片”,广阳湾珊瑚中学凭实力“出圈”!

分布于教学楼连廊顶部的智能照明设备,根据不同的时间和场景需求自动调节灯光亮度和开关状态;安装于各个教室内的智能黑板、学校同步时钟、学生互动设备,在极简以太全光网的赋能下,为师生提供丰富的教学体验与学习支持......行走于重庆市广阳湾珊瑚中学,像是与充满科技感的“校园…

病理AI领域的基础模型汇总|顶刊专题汇总·24-07-26

小罗碎碎念 本期文献主题:病理AI领域的最新基础模型 今天的推文是一期生日特辑,定时在下午六点二十一分发表(今天农历六月二十一,哈哈),算是自己给自己的24岁生日礼物,希望24岁这一年&#xff0…

ollama本地部署大语言模型记录

目录 安装Ollama更改模型存放位置 拉取模型GemmaMistralQwen1.5(通义千问)codellama 部署Open webui测试性能知识广度问题1问题2 代码能力总结 最近突然对大语言模型感兴趣 同时在平时的一些线下断网的CTF比赛中,大语言模型也可以作为一个能对话交互的高级知识检索…

SSRF中伪协议学习

SSRF常用的伪协议 file:// 从文件系统中获取文件内容,如file:///etc/passwd dict:// 字典服务协议,访问字典资源,如 dict:///ip:6739/info: ftp:// 可用于网络端口扫描 sftp:// SSH文件传输协议或安全文件传输协议 ldap://轻量级目录访问协议 tftp:// 简单文件传输协议 gopher…

【JavaScript】函数声明和函数表达式的区别

文章目录 一、函数声明1. 定义方式2. 作用域提升(Hoisting)3. 块级作用域 二、函数表达式1. 定义方式2. 作用域提升(Hoisting)3. 自引用 三、其他区别1. 函数名2. 可读性和代码组织3. 使用场景 四、总结函数声明函数表达式 在Java…

【大模型系列】Video-LaVIT(2024.06)

Paper:https://arxiv.org/abs/2402.03161Github:https://video-lavit.github.io/Title:Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional TokenizationAuthor:Yang Jin, 北大&#x…

Java面试八股之@Qualifier的作用

Qualifier的作用 Qualifier 是 Spring 框架中的一个非常有用的注解,它主要用于解决在依赖注入过程中出现的歧义问题。当 Spring 容器中有多个相同类型的 Bean 时,Qualifier 可以帮助指明应该使用哪一个具体的 Bean 进行注入。 Qualifier 的作用&#x…

外设购物平台

目 录 一、系统分析 二、系统设计 2.1 系统功能设计 2.2 数据库设计 三、系统实现 3.1 注册功能 3.2 登录功能 3.3 分页查询所有商品信息功能 3.4 分页条件(精确、模糊)查询商品信息功能 3.5 购物车功能 3.6 订单管理功能 四、项…

【Opencv】模糊

消除噪声 用该像素周围的平均值代替该像素值 4个函数 blur():最经典的 import os import cv2 img cv2.imread(os.path.join(.,dog.jpg)) k_size 7 #窗口大小,数字越大,模糊越强 img_blur cv2.blur(img,(k_size,k_size)) #窗口是正方形&#xff…

云计算实训16——关于web,http协议,https协议,apache,nginx的学习与认知

一、web基本概念和常识 1.Web Web 服务是动态的、可交互的、跨平台的和图形化的为⽤户提供的⼀种在互联⽹上浏览信息的服务。 2.web服务器(web server) 也称HTTP服务器(HTTP server),主要有 Nginx、Apache、Tomcat 等。…

C#使用csvhelper实现csv的操作

新建控制台项目 安装csvhelper 33.0.1 写入csv 新建Foo.cs namespace CsvSut02;public class Foo {public int Id { get; set; }public string Name { get; set; } }批量写入 using System.Globalization; using CsvHelper; using CsvHelper.Configuration;namespace Csv…

[数据集][目标检测]金属罐缺陷检测数据集VOC+YOLO格式8095张4类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):8095 标注数量(xml文件个数):8095 标注数量(txt文件个数):8095 标注…

使用Process Explorer和Dependency Walker排查dll动态库加载失败的问题

目录 1、问题描述 2、如何调试Release版本的代码? 3、使用Process Explorer查看exe主程序加载的dll库列表,发现mediaplay.dll没有加载起来 4、使用Dependency Walker查看rtcmpdll.dll的库依赖关系和接口调用情况,定位问题 4.1、使用Depe…

Javascript面试基础6【每日更新10】

Gulp gulp是前端开发过程中一种基于流的代码构建工具,是自动化项目的构建利器;它不仅能对网站资源进行优化,而且在开发过程中很多重复的任务能够使用正确的工具自动完成 Gulp的核心概念:流 流,简单来说就是建立在面向对象基础上的一种抽象的…