基于级联深度学习算法在双参数MRI中检测前列腺病变的评估| 文献速递-AI辅助的放射影像疾病诊断

Title

题目

Evaluation of a Cascaded Deep Learning–based Algorithm  for Prostate Lesion Detection at Biparametric MRI

基于级联深度学习算法在双参数MRI中检测前列腺病变的评估

Background

背景

Multiparametric MRI (mpMRI) improves prostate cancer (PCa) detection compared with systematic biopsy, but its interpretation is prone to interreader variation, which results in performance inconsistency. Artificial intelligence (AI) models can assist in mpMRI interpretation, but large training data sets and extensive model testing are required.

系统性活检相比,多参数MRI(mpMRI)在前列腺癌(PCa)检测方面具有优势,但其解读容易受阅片者之间的差异影响,从而导致性能不一致。人工智能(AI)模型可以辅助mpMRI的解读,但需要大量的训练数据集和广泛的模型测试。

Method

方法

This secondary analysis of a prospective registry included consecutive patients with suspected or known PCa who underwent mpMRI, US-guided systematic biopsy, or combined systematic and MRI/US fusion–guided biopsy between April 2019 and September 2022. All lesions were prospectively evaluated using Prostate Imaging Reporting and Data System version 2.1. The lesion- and participant-level performance of a previously developed cascaded deep learning algorithm was compared with histopathologic outcomes and radiologist readings using sensitivity, positive predictive value (PPV), and Dice similarity coefficient (DSC).

这项前瞻性配准的二次分析包括在2019年4月至2022年9月期间进行mpMRI、超声引导的系统性活检或系统性和MRI/超声融合引导活检的连续前列腺癌(PCa)疑似或已确诊患者。所有病变均使用前列腺成像报告和数据系统(PI-RADS)2.1版进行前瞻性评估。将先前开发的级联深度学习算法在病变和参与者层面的表现与组织病理学结果和放射科医生的解读结果进行比较,使用的评价指标包括敏感性、阳性预测值(PPV)和Dice相似系数(DSC)。

Conclusion

结论

The AI algorithm detected cancer-suspicious lesions on biparametric MRI scans with a performance comparable to that of an experienced radiologist. Moreover, the algorithm reliably predicted clinically significant lesions at histopathologic examination.

该人工智能算法在双参数MRI扫描中检测可疑癌变病灶的表现与经验丰富的放射科医生相当。此外,该算法在组织病理学检查中可靠地预测了具有临床意义的病灶。

Results

结果

A total of 658 male participants (median age, 67 years [IQR, 61–71 years]) with 1029 MRI-visible lesions were included. At histopathologic analysis, 45% (294 of 658) of participants had lesions of International Society of Urological Pathology (ISUP) grade group (GG) 2 or higher. The algorithm identified 96% (282 of 294; 95% CI: 94%, 98%) of all participants with clinically significant PCa, whereas the radiologist identified 98% (287 of 294; 95% CI: 96%, 99%; P = .23). The algorithm identified 84% (103 of 122), 96% (152 of 159), 96% (47 of 49), 95% (38 of 40), and 98% (45 of 46) of participants with ISUP GG 1, 2, 3, 4, and 5 lesions, respectively. In the lesion-level analysis using radiologist ground truth, the detection sensitivity was 55% (569 of 1029; 95% CI: 52%, 58%), and the PPV was 57% (535 of 934; 95% CI: 54%, 61%). The mean number of false-positive lesions per participant was 0.61 (range, 0–3). The lesion segmentation DSC was 0.29.

共纳入658名男性参与者(中位年龄67岁[IQR, 61-71岁]),其中有1029个在MRI中可见的病变。在组织病理学分析中,45%的参与者(658人中的294人)具有国际泌尿病理学会(ISUP)2级或更高级别的病变。算法识别出96%的具有临床意义前列腺癌(PCa)的参与者(294人中的282人;95%CI: 94%, 98%),而放射科医生识别出98%(294人中的287人;95%CI: 96%, 99%;P = .23)。算法分别识别出84%(122人中的103人)、96%(159人中的152人)、96%(49人中的47人)、95%(40人中的38人)和98%(46人中的45人)的ISUP 1、2、3、4和5级病变参与者。在基于放射科医生标准的病变级别分析中,检测敏感性为55%(1029个病变中的569个;95%CI: 52%, 58%),阳性预测值(PPV)为57%(934个病变中的535个;95%CI: 54%, 61%)。每名参与者的平均假阳性病变数为0.61(范围:0-3)。病变分割的Dice相似系数(DSC)为0.29。

Figure

图片

Figure 1: Participant flow diagram. mpMRI = multiparametric MRI, PI-RADS = Prostate Imaging Reporting and Data System.

图1:参与者流程图。mpMRI = 多参数MRI,PI-RADS = 前列腺成像报告和数据系统。

图片

Figure 2: Distribution of combined biopsy outcomes (percentage) based on highest International Society of Urological Pathology (ISUP) grade group per participant (PT). AI = artificial intelligence, PI-RADS = Prostate Imaging Reporting and Data System.

图2:基于每位参与者(PT)最高国际泌尿病理学会(ISUP)分级组的综合活检结果分布(百分比)。AI = 人工智能,PI-RADS = 前列腺成像报告和数据系统。

图片

Figure 3: Axial multiparametric MRI scans in a 72-year-old male participant with a serum prostate-specific antigen level of 9.1 ng/mL: (A) T2-weighted image, (B)apparent diffusion coefficient map, (C) high-b-value diffusion-weighted image (b = 1500 sec/mm2 ), (D) dynamic contrast-enhanced image (frame 17 of 54 acquired at 5.6-second intervals), (E) T2-weighted image with radiologist-segmented lesions (green contours) overlaid, (F) T2-weighted image with artificial intelligence (AI) prediction map overlaid (red contour is positive prediction; blue contour is AI prostate organ segmentation), and (G) T2-weighted image with AI probability map overlaid (red indicates higher probability). Two distinct lesions were detected by the radiologist and represented the ground truth. Lesion 1 (1.6 cm; arrow in A–D) was in the right midgland transition zone and was designated Prostate Imaging Reporting and Data System (PI-RADS) category 4. Lesion 2 (1.5 cm; arrowhead in A–D) was in the left midgland transition zone and was designated PI-RADS category 3. Lesion 1 was correctly detected (true positive), while lesion 2 was missed by the AI algorithm (false negative). Based on targeted biopsy samples, lesion 1 was positive for Gleason score 7 (3 + 4) prostate adenocarcinoma, and lesion 2 was benign.

图3:72岁男性参与者的轴向多参数MRI扫描,血清前列腺特异性抗原水平为9.1 ng/mL:(A) T2加权图像,(B) 表观扩散系数图,(C) 高b值扩散加权图像(b = 1500 sec/mm²),(D) 动态对比增强图像(以5.6秒间隔获取的54帧中的第17帧),(E) 叠加放射科医生分割病变的T2加权图像(绿色轮廓),(F) 叠加人工智能(AI)预测图的T2加权图像(红色轮廓为阳性预测;蓝色轮廓为AI前列腺器官分割),(G) 叠加AI概率图的T2加权图像(红色表示较高概率)。放射科医生检测到两个不同的病变并作为标准。病变1(1.6 cm;A-D中的箭头)位于右侧中腺移行区,被指定为前列腺成像报告和数据系统(PI-RADS)类别4。病变2(1.5 cm;A-D中的箭头)位于左侧中腺移行区,被指定为PI-RADS类别3。病变1被正确检测(真阳性),而病变2被AI算法遗漏(假阴性)。根据靶向活检样本,病变1为Gleason评分7(3+4)的前列腺腺癌阳性,病变2为良性。

图片

Figure 4: Axial multiparametric MRI scans in a 64-year-old male participant with a serum prostate-specific antigen level of 8.1 ng/mL: (A)T2-weighted image, (B) apparent diffusion coefficient map, (C) high-b-value diffusion-weighted image (b = 1500 sec/mm2 ), (D) dynamic contrastenhanced image (frame 45 of 54 acquired at 5.6-second intervals), (E) T2-weighted image with artificial intelligence (AI) prediction map overlaid (red contour is positive prediction; blue contour is AI prostate organ segmentation), and (F) T2-weighted image with AI probability map overlaid (red indicates higher probability). No distinct lesion was detected by the radiologist (Prostate Imaging Reporting and Data System category 1). One lesion was called by the AI algorithm in the left midgland peripheral zone (arrow in E and F), representing a false positive based on the radiologist ground truth. Systematic biopsy obtained from this site (left midgland lateral) was positive for Gleason score 7 (3 + 4) prostate adenocarcinoma.

图4:64岁男性参与者的轴向多参数MRI扫描,血清前列腺特异性抗原水平为8.1 ng/mL:(A) T2加权图像,(B) 表观扩散系数图,(C) 高b值扩散加权图像(b = 1500 sec/mm²),(D) 动态对比增强图像(以5.6秒间隔获取的54帧中的第45帧),(E) 叠加人工智能(AI)预测图的T2加权图像(红色轮廓为阳性预测;蓝色轮廓为AI前列腺器官分割),(F) 叠加AI概率图的T2加权图像(红色表示较高概率)。放射科医生未检测到明显病变(前列腺成像报告和数据系统类别1)。AI算法在左侧中腺周围区检测到一个病变(E和F中的箭头),根据放射科医生的标准,这是一个假阳性。系统性活检从该部位(左侧中腺侧面)获取的样本显示为Gleason评分7(3+4)的前列腺腺癌阳性。

图片

Figure 5: Axial multiparametric MRI scans in a 69-year-old male participant with a serum prostate-specific antigen level of 7.3 ng/mL: (A)T2-weighted image, (B) apparent diffusion coefficient map, (C) high-b-value diffusion-weighted image (b = 1500 sec/mm2 ), (D) dynamic contrastenhanced image (frame 25 of 54 acquired at 5.6-second intervals), (E) T2-weighted image with artificial intelligence (AI) prediction map overlaid (red contour is positive prediction; blue contour is AI prostate organ segmentation), and (F) T2-weighted image with AI probability map overlaid (red indicates higher probability). One lesion was called by the AI algorithm in the left midgland anterior transition zone (arrow in E and F), representing a false positive based on the radiologist ground truth. A systematic biopsy sample obtained from this site (left midgland medial) was benign.

图5:69岁男性参与者的轴向多参数MRI扫描,血清前列腺特异性抗原水平为7.3 ng/mL:(A) T2加权图像,(B) 表观扩散系数图,(C) 高b值扩散加权图像(b = 1500 sec/mm²),(D) 动态对比增强图像(以5.6秒间隔获取的54帧中的第25帧),(E) 叠加人工智能(AI)预测图的T2加权图像(红色轮廓为阳性预测;蓝色轮廓为AI前列腺器官分割),(F) 叠加AI概率图的T2加权图像(红色表示较高概率)。AI算法在左侧中腺前部移行区检测到一个病变(E和F中的箭头),根据放射科医生的标准,这是一个假阳性。从该部位(左侧中腺内侧)获取的系统性活检样本为良性。

图片

Figure 6: Axial multiparametric MRI scans in a 74-year-old male participant with a serum prostate-specific antigen level of 12.9 ng/mL: (A)** T2-weighted image, (B) apparent diffusion coefficient map, (C) high-b-value diffusion-weighted image (b* = 1500 sec/mm2 ), (D) dynamic contrast-enhanced image (frame 16 of 54 acquired at 5.6-second intervals), (E) T2-weighted image with radiologist-segmented lesion (green contour) overlaid, and (F) T2-weighted image with artificial intelligence (AI) prediction map overlaid (no positive prediction; blue contour is AI prostate organ segmentation). One lesion was detected by the radiologist and represented the ground truth. The lesion (1.9 cm; arrow in A–D) was in the right apical midgland peripheral zone and was designated Prostate Imaging Reporting and Data System category 4. This lesion was missed by the AI algorithm, representing a false negative. A targeted biopsy sample obtained from the lesion was positive for Gleason score 7 (3 + 4) prostate adenocarcinoma.

图6:74岁男性参与者的轴向多参数MRI扫描,血清前列腺特异性抗原水平为12.9 ng/mL:(A) T2加权图像,(B) 表观扩散系数图,(C) 高b值扩散加权图像(b = 1500 sec/mm²),(D) 动态对比增强图像(以5.6秒间隔获取的54帧中的第16帧),(E) 叠加放射科医生分割病变的T2加权图像(绿色轮廓),(F) 叠加人工智能(AI)预测图的T2加权图像(无阳性预测;蓝色轮廓为AI前列腺器官分割)。放射科医生检测到一个病变并作为标准。病变(1.9 cm;A-D中的箭头)位于右侧尖端中腺周围区,被指定为前列腺成像报告和数据系统类别4。该病变被AI算法遗漏,属于假阴性。从该病变获取的靶向活检样本显示为Gleason评分7(3+4)的前列腺腺癌阳性。

Table

图片

Table 1: Participant and Lesion Characteristics (n = 658 Participants)

表1:参与者和病变特征(n = 658名参与者)

图片

Table 2: Lesion-Level Comparisons of Radiologist and AI Cancer Detection Rates Based on Histopathologic Ground Truth

表2:基于组织病理学标准的放射科医生和人工智能癌症检测率的病变级别比较

图片

Table 3: Participant-Level Sensitivity and PPV of AI versus Radiologist Detection of Prostate Cancer Based on Combined Biopsy Results

表3:基于综合活检结果的人工智能与放射科医生在前列腺癌检测中的参与者级别敏感性和阳性预测值(PPV)比较

图片

Table 4: Participant-Level Sensitivity and PPV of AI versus Radiologist Detection of Clinically Significant Prostate Cancer Based on Combined Biopsy Results

表4:基于综合活检结果的人工智能与放射科医生在检测临床意义前列腺癌中的参与者级别敏感性和阳性预测值(PPV)比较

图片

Table 5: Lesion- and Participant-Level Detection Performance Metrics Based on Radiologist Ground Truth

表5:基于放射科医生标准的病变和参与者级别检测性能指标

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/388204.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SDK 多版本管理控制利器 SDKMAN 介绍及使用

一、SDKMAN 假如你同时参与了一个使用JDK 8的项目和一个采用JDK 17特性的项目。每次在两个项目之间切换时,你都面临着版本冲突的问题。如果有那么一个工具类似于 Python 中的 anaconda 工具,可以帮助你管理不同版本的 SDK ,是不是非常有用&a…

八股文无用?也许是计算机大学生的重要人生指南!

大家所说的"八股文"其实指的是那些固定、标准化的面试问题和答案,通常涉及特定的知识点和技术概念。 博主本人也是一枚大学生,个人也记背过相关的八股文,比如计算机网络里的TCP和UDP的区别、TCP三次握手和四次挥手的具体过程等等&a…

汽车电子KL15,KLR,KL30等术语解释

KL作为术语,是德语’klemme’的缩写,代表连接器或连接 缩略词解释KL15汽车电源的RUN模式KL50汽车电源的Crank模式KLR汽车电源的ACC模式KL30汽车蓄电池的正极,始终保持带电状态KL31汽车蓄电池的负极,持续与车辆接地连接KL4048V汽车…

遇到Websocket就不会测了?别慌,学会这个Jmeter插件轻松解决....

websocket 是一种双向通信协议,在建立连接后,websocket服务端和客户端都能主动向对方发送或者接收数据,而在http协议中,一个request只能有一个response,而且这个response也是被动的,不能主动发起。 websoc…

OpenCV C++的网络实时视频流传输——基于Yolov5 face与TCP实现实时推流的深度学习图像处理客户端与服务器端

前言 在Windows下使用TCP协议,基于OpenCV C与Yolov5实现了一个完整的实时推流的深度学习图像处理客户端与服务器端,为了达到实时传输的效果,客户端使用了多线程的方式实现。深度学习模型是基于onnxruntime的GPU推理。,实现效果如…

微服务架构三大利器:限流、降级与熔断

文章目录 前言一、限流(Rate Limiting)二、降级(Degradation)三、熔断(Circuit Breaker)四、三者关系总结 前言 限流、降级和熔断是分布式系统中常用的容错策略,它们各自承担着不同的角色&#…

干货 | 2024中国联通算力网络安全白皮书(免费下载)

本白皮书以国家整体安全观为指导,充分发挥网络安全现代产业链链长的主体支撑和融通带动作用,提出算力网络“新质安全、共链可信”的安全愿景和“构建开放融合内生免疫弹性健壮网安智治的一体化安全”的安全目标。从运营商开展网络建设和应用部署的角度出…

WebWorker处理百万数据

Home.vue <template><el-input v-model"Val" style"width: 400px"></el-input><el-button click"imgHandler">过滤</el-button><hr /><canvas id"myCanvas" width"500" height&quo…

Linux系统之DHCP服务配置

1、准备阶段 Windows&#xff08;客户端&#xff09;开启Vmnet8网卡Linux6&#xff08;服务端&#xff09;网络连接选择NAT模式&#xff0c;并配置IP地址为192.168.11.1/24Linux5&#xff08;客户端&#xff09;网络连接选择NAT模式将NAT的DHCP功能取消 2、DHCP服务器相关软件…

宝塔部署springboot vue ruoyi前后端分离项目,分离lib、resources

1、“文件”中创建好相关项目目录,并将项目相关文件传到对应目录 例如&#xff1a;项目名称/ #项目总目录 api/ #存放jar项目的Java项目文件 manage/ #vue管理后端界面 …

Vue3_对接声网实时音视频_多人视频会议

目录 一、声网 1.注册账号 2.新建项目 二、实时音视频集成 1.声网CDN集成 2.iframe嵌入html 3.自定义UI集成 4.提高进入房间速度 web项目需要实现一个多人会议&#xff0c;对接的声网的灵动课堂。在这里说一下对接流程。 一、声网 声网成立于2014年&#xff0c;是全球…

ARCGIS PRO DSK GraphicsLayer创建文本要素

一、判断GraphicsLayer层【地块注记】是否存在&#xff0c;如果不存在则新建、如果存在则删除所有要素 Dim GraphicsLayer pmap.GetLayersAsFlattenedList().OfType(Of ArcGIS.Desktop.Mapping.GraphicsLayer).FirstOrDefault() 获取当前map对象中的GetLayer图层 Await Queue…

DataKit之OpenGauss数据迁移工具

# 在讲openGauss和datakit之前&#xff0c;我先说下pgloader这个工具也支持将数据从mysql同步到openGauss或者postgresql&#xff0c;但是 注意了&#xff0c;官网明确说明了不支持视图和触发器的迁移&#xff0c;如果你只是迁移表结构和数据&#xff0c;那么这个既简单又快下面…

使用Go的tls库搭建HTTPS服务

文章目录 tls.go 中文文档使用OpenSSL生成证书Win系统安装openssl生成证书 HTTP情况下的通信编写服务器代码编写客户端代码 tls.go 中文文档 https://studygolang.com/pkgdoc 使用OpenSSL生成证书 Win系统安装openssl 安装地址 https://slproweb.com/products/Win32OpenSSL.…

设计模式17-适配模式

设计模式17-适配模式 动机定义与结构C代码推导总结应用具体应用示例 动机 在软件系统中由于应用环境的变化常常需要将一些现存的对象。放到新的环境中去应用。但是新环境要求的接口是这些现存对象所不满足的。那么这种情况下如何应对这种迁移的变化&#xff1f;如何既能利用现…

计算机毕业设计选题推荐-戏曲文化体验系统-Java/Python项目实战

✨作者主页&#xff1a;IT毕设梦工厂✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…

Python自动发送邮件如何设置邮件内容格式?

Python自动发送邮件时&#xff0c;如何自动化发送HTML格式邮件&#xff1f; Python是一种功能强大且灵活的编程语言&#xff0c;广泛用于各种自动化任务&#xff0c;其中包括自动发送邮件。AokSend将介绍在使用Python自动发送邮件时&#xff0c;如何设置邮件内容的格式&#x…

【系统架构设计师】二十二、嵌入式系统架构设计理论与实践②

目录 五、嵌入式中间件 5.1 嵌入式中间件定义 5.2 嵌入式中间件的分类 六、嵌入式系统软件架构设计方法 6.1 基于架构的软件设计开发方法的应用 6.2 属性驱动的软件设计方法 6.2.1 ADD 开发方法的质量属性与场景 6.2.2 ADD 开发过程 6.3 实时系统设计方法 6.3.1 DART…

索引:SpringCloudAlibaba分布式组件全部框架笔记

索引&#xff1a;SpringCloudAlibaba分布式组件全部框架笔记 一推荐一套分布式微服务的版本管理父工程pom模板&#xff1a;Springcloud、SpringCloudAlibaba、Springboot二SpringBoot、SpringCloud、SpringCloudAlibaba等各种组件的版本匹配图&#xff1a;三Spring Cloud Aliba…

【MySQL篇】Percona XtraBackup标准化全库完整备份策略(第三篇,总共五篇)

&#x1f4ab;《博主介绍》&#xff1a;✨又是一天没白过&#xff0c;我是奈斯&#xff0c;DBA一名✨ &#x1f4ab;《擅长领域》&#xff1a;✌️擅长Oracle、MySQL、SQLserver、阿里云AnalyticDB for MySQL(分布式数据仓库)、Linux&#xff0c;也在扩展大数据方向的知识面✌️…