【深度学习实战(49)】目标检测损失函数:IoU、GIoU、DIoU、CIoU、EIoU、alpha IoU、SIoU、WIoU原理及Pytorch实现

前言

损失函数是用来评价模型的预测值和真实值一致程度,损失函数越小,通常模型的性能越好。不同的模型用的损失函数一般也不一样。损失函数主要是用在模型的训练阶段,如果我们想让预测值无限接近于真实值,就需要将损失值降到最低,在这个过程中就需要引入损失函数,而损失函数的选择又是十分关键。尤其是在目标检测中,损失函数直接关乎到检测效果是否准确,其中IOU损失函数目前主要应用于目标检测的领域,其演变的过程如下:IOU --> GIOU --> DIOU -->CIOU损失函数,每一种损失函数都较上一种损失函数有所提升,下面来具体介绍这几种损失函数。

1 IoU(Intersection over Union)

1.1 IoU简介

UnitBox: An Advanced Object Detection Network

IoU全称Intersection over Union,交并比。IoU是一种测量在特定数据集中检测相应物体准确度的一个标准。只要是在输出中得出一个预测范围(bounding boxes)的任务都可以用IoU来进行测量。

IoU算法是使用最广泛的算法,大部分的检测算法都是使用的这个算法。在目标识别中,我们的预测框与实际框的某种比值就是IoU。
在这里插入图片描述

1.2 IoU公式

在这里插入图片描述

1.3 优点

  • IOU能够直观地反映出目标检测结果与真实情况之间的匹配程度。
  • IOU具有尺度不变性,由于IOU是基于重叠度量的,它不受目标尺度和形状变换的影响,这使得IOU适用于各种不同尺度和形状的目标检测任务。

1.4 缺点

当预测框和目标框不相交时,即IOU=0时,不能反映两个目标之间距离的远近,此时损失函数不可导,IOU Loss 无法优化。
当两个检测框大小相同,两个IOU也相同,IOU_Loss无法精确的反映两个框的重合度大小。
在这里插入图片描述

1.5 IoU代码

def IoU(box1, box2):b1_x1, b1_y1, b1_x2, b1_y2 = box1b2_x1, b2_y1, b2_x2, b2_y2 = box2xx1 = np.maximum(b1_x1, b2_x1)yy1 = np.maximum(b1_y1, b2_y1)xx2 = np.minimum(b1_x2, b2_x2)yy2 = np.minimum(b1_y2, b2_y2)w = np.maximum(0.0, yy2 - yy1)h = np.maximum(0.0, xx2 - xx1)inter = w * hIoU = inter/((b1_x2-b1_x1)*(b1_y2-b1_y1) + (b2_x2-b2_x1)*(b2_y2-b2_y1) - inter)print("IoU: ", IoU)if __name__ == "__main__":box1 = np.array([100, 100, 210, 210])box2 = np.array([150, 150, 230, 220])IoU(box1, box2)

2 GIoU

Generalized Intersection over Union: A Metric and A Loss for Bounding BoxRegression

2.1 GIoU简介

通过上述分析,当预测框和真实框不相交时IoU值为0,导致很大范围内损失函数没有梯度。针对这一问题,提出了GIoU作为损失函数。GIoU比IoU多了一个‘Generalized’,能在更广义的层面上计算IoU。当检测框和真实框没有出现重叠的时候IoU的loss都是一样的,因此GIoU就引入了最小封闭形状C(C可以把A,B包含在内),在不重叠情况下能让预测框尽可能朝着真实框前进,这样就可以解决检测框和真实框没有重叠的问题 。
在这里插入图片描述

2.2 GIoU公式

算法公式及其解释:其实想法也很简单(但这一步很难):假如现在有两个box A,B,我们找到一个最小的封闭形状C,让C可以把A,B包含在内,然后再计算C中没有覆盖A和B的面积占C总面积的比值,最后用A与B的IoU减去这个比值,GIoU计算公式如下
在这里插入图片描述

2.3 优点

  • GIOU_Loss中,增加了相交尺度的衡量方式,缓解了单纯IOU_Loss时的尴尬,但是依然没有完全解决IoU存在的问题

2.4 缺点

  • 对每个预测框与真实框均要去计算最小外接矩形,计算及收敛速度受到限制
  • 状态1、2、3都是预测框在目标框内部且预测框大小一致的情况,这时预测框和目标框的差集都是相同的,因此这三种状态的GIoU值也都是相同的,这时GIoU退化成了IoU,无法区分相对位置关系。
    在这里插入图片描述

2.5 GIoU代码

def GIoU(box1, box2):b1_x1, b1_y1, b1_x2, b1_y2 = box1b2_x1, b2_y1, b2_x2, b2_y2 = box2# IOUxx1 = np.maximum(b1_x1, b2_x1)yy1 = np.maximum(b1_y1, b2_y1)xx2 = np.minimum(b1_x2, b2_x2)yy2 = np.minimum(b1_y2, b2_y2)inter_w = np.maximum(0.0, yy2 - yy1)inter_h = np.maximum(0.0, xx2 - xx1)inter = inter_w * inter_hUnion = (b1_x2-b1_x1)*(b1_y2-b1_y1) + (b2_x2-b2_x1)*(b2_y2-b2_y1) - inter# GIOUC_xx1 = np.minimum(b1_x1, b2_x1)C_yy1 = np.minimum(b1_y1, b2_y1)C_xx2 = np.maximum(b1_x2, b2_x2)C_yy2 = np.maximum(b1_y2, b2_y2)C_area = (C_xx2 - C_xx1) * (C_yy2 - C_yy1)IOU = inter / UnionGIOU = IOU - abs((C_area-Union)/C_area)print("GIOU:", GIOU)if __name__ == "__main__":box1 = np.array([100, 100, 210, 210])box2 = np.array([150, 150, 230, 220])GIoU(box1, box2)

3 DIoU

Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression

3.1 简介

好的目标框回归函数应该考虑三个重要几何因素:重叠面积中心点距离长宽比。针对IoU和GIoU存在的问题,作者从两个方面进行考虑

  • 一:如何最小化预测框和目标框之间的归一化距离?
  • 二:如何在预测框和目标框重叠时,回归的更准确?
    针对第一个问题,提出了DIoU_Loss(Distance_IoU_Loss),从而使收敛速度更快,性能更好。
    在这里插入图片描述

3.2 DIoU公式

在这里插入图片描述
在这里插入图片描述

3.3 优点

  • DIOU在与目标框重叠时,仍然可以为边界框提供移动方向;
  • DIOU可以直接最小化两个目标框的距离,因此比GIOU收敛快得多;
  • DIOU还可以替换普通的IOU评价策略,应用于NMS中,使得NMS得到的结果更加合理和有效。

3.4 缺点

  • DIoU考虑了重叠面积和中心点距离,当目标框包裹预测框的时候,直接度量2个框的距离,因此DIoU收敛的更快,但并没有考虑到长宽比
  • 在这里插入图片描述

比如上面三种情况,目标框包裹预测框,本来DIOU_Loss可以起作用。但预测框的中心点的位置都是一样的,因此按照DIOU_Loss的计算公式,三者的值都是相同的。

3.5 DIoU代码

def DIoU(box1, box2):b1_x1, b1_y1, b1_x2, b1_y2 = box1b2_x1, b2_y1, b2_x2, b2_y2 = box2# IOUxx1 = np.maximum(b1_x1, b2_x1)yy1 = np.maximum(b1_y1, b2_y1)xx2 = np.minimum(b1_x2, b2_x2)yy2 = np.minimum(b1_y2, b2_y2)inter_w = np.maximum(0.0, xx2 - xx1)inter_h = np.maximum(0.0, yy2 - yy1)inter = inter_w * inter_hUnion = (b1_x2 - b1_x1)*(b1_y2 - b1_y1) + (b2_x2 - b2_x1)*(b2_y2 - b2_y1) - inter# DISTANCEC_xx1 = np.minimum(b1_x1, b2_x1)C_yy1 = np.minimum(b1_y1, b2_y1)C_xx2 = np.maximum(b1_x2, b2_x2)C_yy2 = np.maximum(b1_y2, b2_y2)C_area = (C_xx2 - C_xx1) * (C_yy2 - C_yy1)center_b_x = (b1_x1+b1_x2)/2center_b_y = (b1_y1+b1_y2)/2center_gtb_x = (b2_x1+b2_x2)/2center_gtb_y = (b2_y1+b2_y2)/2center_distance = (center_gtb_x-center_b_x)**2 + (center_gtb_y-center_b_y)**2c_distance = (C_xx2 - C_xx1)**2 + (C_yy2 - C_yy1)**2IOU = inter/UnionDIOU = IOU - center_distance /c_distanceprint("DIOU:", DIOU)if __name__ == "__main__":box1 = np.array([100, 100, 210, 210])box2 = np.array([150, 150, 230, 220])DIoU(box1, box2)

4 CIoU

Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression

4.1 简介

DIoU考虑了重叠面积和中心点距离,当目标框包裹预测框的时候,直接度量2个框的距离,因此DIoU收敛的更快,但并没有考虑到长宽比。针对这个问题,又提出了CIOU_Loss,不对不说,科学总是在解决问题中,不断进步!!

CIoU就是在DIoU的基础上增加了检测框尺度的loss,增加了长和宽的loss,使得目标框回归更加稳定,不会像IoU和GIoU一样出现训练过程中发散等问题。

4.2 CIoU公式

在这里插入图片描述

4.3 优点

  • 形状不变性: CIOU 损失函数在设计上考虑了目标框的形状信息,通过引入修正因子,使得损失对于不同形状的目标框更具鲁棒性。这使得模型更容易捕捉目标的准确形状。
  • 对定位精度的敏感性: CIOU 损失函数对目标框的位置预测更为敏感,因为它考虑了目标框的对角线距离。这有助于提高目标检测模型在定位目标时的精度。
  • 全面性: CIOU 损失函数综合考虑了位置、形状和方向等多个因素,使得模型更全面地学习目标框的特征。这有助于提高模型在复杂场景中的性能。

4.4 缺点

  • 如果预测框和gt框的长宽比是相同的,那么长宽比的惩罚项恒为0,不合理
  • 观察CIoU中w, h相对于v的梯度,发现这两个梯度是一对相反数,也就是说,w和h不能同时增大或减小,这显然也不够合理的。

4.5 代码

def CIoU(box1, box2):b1_x1, b1_y1, b1_x2, b1_y2 = box1b2_x1, b2_y1, b2_x2, b2_y2 = box2# IOUxx1 = np.maximum(b1_x1, b2_x1)yy1 = np.maximum(b1_y1, b2_y1)xx2 = np.minimum(b1_x2, b2_x2)yy2 = np.minimum(b1_y2, b2_y2)inter_w = np.maximum(0.0, xx2 - xx1)inter_h = np.maximum(0.0, yy2 - yy1)inter = inter_w*inter_hUnion = (b1_x2-b1_x1)*(b1_y2-b1_y1) + (b2_x2-b2_x1)*(b2_y2-b2_y1) - interIOU = inter/UnionC_xx1 = np.minimum(b1_x1, b2_x1)C_yy1 = np.minimum(b1_y1, b2_y1)C_xx2 = np.maximum(b1_x2, b2_x2)C_yy2 = np.maximum(b1_y2, b2_y2)# DISTANCEcenter_b_x = (b1_x1 + b1_x2)/2center_b_y = (b1_y1 + b1_y2)/2center_gtb_x = (b2_x1 + b2_x2)/2center_gtb_y = (b2_y1 + b2_y2)/2C_area = (C_xx2-C_xx1)*(C_yy2-C_yy1)Distance = (center_gtb_x-center_b_x)**2 + (center_gtb_y-center_b_y)**2Distance_area = Distance/C_area**2# aspect ratiopred_w = b1_y2 - b1_y1pred_h = b1_x2 - b1_x1gt_w = b2_y2 - b2_y1gt_h = b2_x2 - b2_x1v = (4/(np.pi)**2)*(np.arctan(gt_w/gt_h) - np.arctan(pred_w/pred_h))**2alpha = v/((1-IOU) + v)CIOU = IOU - Distance_area - alpha*vprint("CIOU:", CIOU)if __name__ == "__main__":box1 = np.array([100, 100, 210, 210])box2 = np.array([150, 150, 230, 220])CIoU(box1, box2)

参考:https://blog.csdn.net/qq_40716944/article/details/135026393

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/388260.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入探讨RCE漏洞及其防御策略

1. RCE漏洞 1.1. 漏洞原理 远程代码执行(RCE)漏洞允许攻击者远程注入并执行操作系统命令或代码,从而控制后台系统。 1.2. 漏洞产生条件 调用第三方组件存在代码执行漏洞。用户输入内容作为系统命令参数拼接到命令中。对用户输入的过滤不严…

汽车雷达系统集成

汽车雷达系统集成是实现高级驾驶辅助系统(ADAS)和自动驾驶功能的重要环节,它涉及多种硬件和软件的协同工作。以下将详细讲解汽车雷达系统集成的各个方面: 雷达传感器选择 毫米波雷达:毫米波雷达主要使用24GHz和77GHz频…

【SQL Server点滴积累】SQL Server 2016数据库邮件(Database Mail)功能故障的解决方法

今天和大家分享SQL Server 2016数据库邮件(Database Mail)功能故障的解决方法 故障现象: 在SQL Server 2016中配置完成数据库邮件(Database Mail)功能后,当你尝试发送测试邮件后,既收不到测试邮件,也不显示错误消息 KB3186435 -…

Windows + Ubuntu双系统!小白轻松安装

前言 这几天有小伙伴想着装WindowsUbuntu双系统,但苦于找不到办法,就在某篇文章后台留言: 这不,今天就更新了嘛!虽然做不到有求必应,但教程帖还是可以写写的,能帮一个是一个! 今天要…

FFmpeg:多媒体处理的瑞士军刀

😎 作者介绍:欢迎来到我的主页👈,我是程序员行者孙,一个热爱分享技术的制能工人。计算机本硕,人工制能研究生。公众号:AI Sun(领取大厂面经等资料),欢迎加我的…

docker安装phpMyAdmin

直接安装phpMyAdmin需要有php环境,比较麻烦,总结了使用docker安装方法,并提供docker镜像。 1.docker镜像 见我上传的docker镜像:https://download.csdn.net/download/taotao_guiwang/89595177 2.安装 1).加载镜像 docker load …

Portainer-CE(可视化工具)一键部署+中文版

目录 Portainer 的主要功能 安装官方版2.19.5 安装中文版 2.19.5 安装中文版2.11.0 Portainer 是一个开源的图形化管理工具,用于管理 Docker 容器、Swarm 集群和 Kubernetes 集群。它提供了一个用户友好的 Web 界面,可以帮助用户更轻松地管理和监控…

[数据结构] AVL树 模拟实现AVL树

标题:[数据结构] AVL树 && 模拟实现AVL树 水墨不写bug 正文开始: 目录 (一)普通二叉搜索树的痛点 (二)AVL树简介 (1)AVL树的概念 (三)AVL树的…

《程序猿入职必会(5) · CURD 页面细节规范 》

📢 大家好,我是 【战神刘玉栋】,有10多年的研发经验,致力于前后端技术栈的知识沉淀和传播。 💗 🌻 CSDN入驻不久,希望大家多多支持,后续会继续提升文章质量,绝不滥竽充数…

为 Laravel 提供生产模式下的容器化环境:打造现代开发环境的终极指南

为 Laravel 提供生产模式下的容器化环境:打造现代开发环境的终极指南 在现代开发中,容器化已经成为一种趋势。使用 Docker 可以让我们轻松地管理和部署应用程序。本文将带你一步步构建一个高效的 Laravel 容器化环境,确保你的应用程序在开发…

一些Kafka面试题

Kafka是如何保证消息不丢失? 1.生产者发送消息到Broker丢失: 设置异步发送:发送失败则使用回调进行记录或者重发 消息重试:参数配置,可以设置重试次数 2.消息在broker中存储丢失 发送确认机制acks acks0&#xf…

谷粒商城实战笔记-MySQL踩坑记录

文章目录 1, Public Key Retrieval is not allowed问题描述解决办法 2,1044 -Access denied for user root% to database解决方案 1, Public Key Retrieval is not allowed 问题描述 打开DBeaver连接MySQL提示“Public Key Retrieval is no…

4款免费且安全:常用的PDF转Word在线转换工具推荐

现在办公越来越离不开电脑了,PDF文件和Word文档来回转换的需求也越来越大。作为一个天天跟文件打交道的上班族,我特别明白找个好用、靠谱的PDF转Word在线转换工具有多重要。今儿个,给大家说说五个免费的转换工具,都是我试过觉得挺…

多微信管理不再难:聚合聊天神器助你轻松应对!

在当今社交媒体高度发达的时代,很多人都在使用多个微信账号来管理个人与工作联系。面对如此众多的信息沟通,如何高效管理成了一个难题。 幸运的是,聚合聊天神器的出现,彻底改变了这一局面,让我们轻松应对多微信账号的…

接口测试框架中测试用例管理模块的优化与思考!

引言 在当今软件开发的快速迭代环境中,接口自动化测试不仅是确保软件质量的基石,更是推动持续集成(CI)和持续交付(CD)的核心环节。测试用例管理作为自动化测试中的重要模块,直接影响着测试的效…

【Python】面向对象的程序设计

一、面向对象的介绍 1.对象 对象是一种抽象概念,表示客观世界存在的实物,现实世界中能够看到的、触碰到的都可以成为对象,如:人、大象、小猫等。 对象通常分为两个部分,即静态部分和动态部分。静态部分为“属性”&a…

从教学到分享,2024精选录屏工具

如果你在公司里承担会议记录的职责,那录屏这项技能你一定要学会。像录屏大师这样的工具可以帮你在远程会议中进行录屏操作,方便你后期整理会议内容。 1.福昕录屏大师 链接直达:https://www.foxitsoftware.cn/REC/ 这款录屏工具提供了多种…

【Python】pandas:排序、重复值、缺省值处理、合并、分组

pandas是Python的扩展库(第三方库),为Python编程语言提供 高性能、易于使用的数据结构和数据分析工具。 pandas官方文档:User Guide — pandas 2.2.2 documentation (pydata.org) 帮助:可使用help(...)查看函数说明文…

MyBatis入门如何使用操作数据库及常见错误(yml配置)

一,什么是MyBatis 是一款优秀的持久层框架,用于简化jdbc的开发 持久层:指的就是持久化操作的层,通常也就是数据访问层(dao),也就是用来操作数据库。 也就是MyBatis是让你更加简单完成程序与数…

详细记录swfit微调interVL2-8B多模态大模型进行目标检测(附代码)

大模型相关目录 大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容 从0起步,扬帆起航。 RAGOnMedicalKG:大模型结合知识图谱的RAG实现DSPy:变革式大模…