MIT-离散数学笔记

离散数学

  • Proposition
    • Ex 1:
    • Ex 2:
    • Ex 3:
    • Ex 4:
    • Ex 5:
    • Ex 6:
    • Ex 7:
    • Ex 8:

Proposition

In mathematics, we have a mathematical proof is a verification of a proposition by a chain of logical deductions from a set of axioms.

在数学中,数学证明是通过一组公理的一系列逻辑演绎来验证一个命题。

Def: A proposition is a statement that is either True or False.

Ex 1:

2 + 3 = 5 2 + 3 = 5 2+3=5


Ex 2:

∀ n ∈ N , p = n 2 + n + 41 \forall n \in N, p = n^2 + n + 41 nN,p=n2+n+41
p is a prime number.

N = {0,1,2,3,…}, Natural numbers

'p is a prime number ’ is a predicate(断言)

a predicate is a proposition whose truth depends one the value of a variable – in this case n.

if n = {0,1,2,3,…,39} p is prime

but
if n = 40, then 40 * 40 + 40 + 41 = 41 * 41, not a prime
if n = 41, then 41 * 41 + 41 + 41 = 41 * 43, not a prime


Ex 3:

a 4 + b 4 + c 4 = d 4 a^4 + b^4 + c^4 = d^4 a4+b4+c4=d4
has no positive integer solutions.

Now, this proposition was conjectured to be true by Euler in 1769.
Euler’s a big honcho in math, It was unsolved for over 2 centuries.Mathematicians worked on it. It was finally disapproved by a very clever fellow named Noam Elkies 218 years later after it was conjectured. And he came up with this:
a = 95800
b = 217519
c = 414560
d = 422481

在这里插入图片描述

∴ ∃ a , b , c , d ∈ N + , a 4 + b 4 + c 4 = d 4 \therefore \exist a,b,c,d \in N^+, a^4 + b^4 + c^4 = d^4 a,b,c,dN+,a4+b4+c4=d4

It took a long time to figure out that actually there was a solution here. Obviously, everything they tried until that time failed. Let me give you another one.


Ex 4:

313 ( x 3 + y 3 ) = z 3 313(x^3 + y^3) = z^3 313(x3+y3)=z3
has no positive integer solutions.

it’s false.

This equation is an example of what’s called an elliptic curve.You study these if you’re really a specialist in mathematics in graduate school, or if you work for certain three-letter agencies, because it’s central to the understanding of how to factor large integers.Ok who cares about factoring? Well, factoring is the way to break crypto systems like RSA, which are used for everything that we do electronically today. You have a PayPal account. You buy something online. You’re using SSL. They’re all using crypto systems, almost all of which are based on number theory. And in particular, they’re based on factoring. And if you can find good asolutions to things like this, or solutions to things likes this, all of a sudden, you can get an angle and a wedge on factoring. And it’s because of that that now RSA uses 1,000 digits modulus’s instead of hundred digit modulus’s like they used to use, because people figured out how to factor and how to break the crypto system. If you could break those crypto systems, well, you can’t rule the world, but it’s close.


Ex 5:

The regions in any map can be colored in four colors, so that adjacent regions have different colors.It has a long history.It was conjectured by somebody named Guthrie in 1853. He’s the first person to say this ought to be possible. And there were many false proofs over the ensuing century. One of the most convincing was a proof using pictures by Kempe in 1879, 26 years later. And this proof was believed for over a decade. until another mathematician named Heawood found a fatal flaw in the argument. Now, this proof by Kempe consisted of drawing pictures of what maps have to look like. So he started by saying, a map has to look like one of these types. And he would draw pictures of them. And then he argued that those types that he draw pictures of, it worked for. Proofs by picture are often very convincing and very wrong. And the point will to be to show you proofs by picture are generally not a good thing. Because your brain just locks in-- oh, that’s what it has to look like. And you don’t think about other ways that it might look like. Now, the four color theorem was finally proved by Appel and Taken in 1977, but they had to use a computer to check thousands of cases. Now, this was a little disturbing to mathematicians, because how do they know the computer didi the right thing? Your colleague writes a proof on the board. You can check it,. But how do you know the computer didn’t mess up, or not do some cases? Now, everybody believes it’s true now. But it’s unsatisfying.


Ex 6:

Every even integer but 2, actually, positive integer but 2, is the sum of two primes. For example, 24 is the sum of 11 and 13, which are prime.
Nobody knows if this is true or false. This is called Goldbach’s conjecture. It was conjectured by Christian Goldbach in 1742. This is a really simple proposition. And it’s amazing it’s not known.

Ex 7:

∀ n ∈ Z , n ≥ 2 ⟹ n 2 ≥ 4 \forall n \in Z, n \ge 2 \implies n^2 \ge 4 nZ,n2n24

Def: An implication p implies q is said to be true if p is false or q is true, either one. So we can write this down in terms of a truth table as follows. You have the values of p and q. And I’ll give the value of p implies q. If p is true and q is true, what about p implies q? It’s true, because q is true in the definition. If p is true and q is false? p implies q is False. if p is false q is true, p implies q is True. What about false and false? p implies q is True. So this is important to remember. False implies anything is True, which is a little strange. There’s a famous expression. If pigs could fly, I would be king. Sort of. In fact, this statement, pigs fly implies I’m king-- that’s true, because pigs don’t fly. Doesn’t matter whether or not I’m king, which I’m not.Since pigs don’t fly, even though that’s false, the implication is true.

Ex 8:

∀ n ∈ Z , n ≥ 2 ⟺ n 2 ≥ 4 \forall n \in Z, n \ge 2 \iff n^2 \ge 4 nZ,n2n24
that is False, for example: n = -3

Truth Table:

pqp => qq => pp <=>q
TTTTT
TFFTF
FTTFF
FFTTT

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/389149.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vmware ubuntu20.04 虚拟文件夹

目录 1.vmware 设置 2.ubuntu设置 1.vmware 设置 设置完成后我们开机 2.ubuntu设置 我们打开终端 输入命令 vmware-hgfsclient可以看到你当前的共享文件 然后我们输入以下命令&#xff0c;用于将共享文件夹挂载到虚拟机中 sudo vmhgfs-fuse .host:/ /mnt -o nonempty -o …

从零开始安装Jupyter Notebook和Jupyter Lab图文教程

前言 随着人工智能热浪&#xff08;机器学习、深度学习、卷积神经网络、强化学习、AGC以及大语言模型LLM, 真的是一浪又一浪&#xff09;的兴起&#xff0c;小伙伴们Python学习的热情达到了空前的高度。当我20年前接触Python的时候&#xff0c;做梦也没有想到Python会发展得怎么…

Blackcat V2.2付费会员制WordPress资源站主题

Blackcat-付费会员制WordPress资源站主题&#xff0c;该主题是基于简约实用的主题选项框架 Codestar Framework 进行开发的功能强大的付费会员制主题&#xff0c;该主题尤其适合用于搭建付费下载资源网站&#xff0c;比如素材站、软件站、视频教程站等付费资源下载网站。 集成…

(~_~)

一、用不同url头利用python访问一个网站&#xff0c;并把返回的东西保存为 requests库 主要用于http发送请求和处理响应 1.发送get和post请求 requests.get(目标网址) requests.post(url,data) post于get不同的是get一般用来请求获取数据&#xff0c;而post相当于带着数…

Yearning-MYSQL 审计平台部署

目录 一. 环境准备 二. 部署安装 三. 基础使用 1.用户管理 2. 创建SQL审计流程 3. 自定义审核规则 4. 导入数据源 5. 创建权限组 6. 登录用户申请工单 1. 创建一个DDL工单提交 2. SQL审核执行 3. SQL执行 4. 数据验证 Yearning 是一个开源的 MySQL SQL 审计平台…

动态规划-斐波那契数列

一. 什么是动态规划 dp一般是需要前面状态的值的问题。比如&#xff0c;解决一个问题需要很多步骤&#xff0c;且步骤之间相关联&#xff0c;后一个步骤的推导需要前一个步骤的结论。而我们所做的就是&#xff0c;将这个带求解的问题分成若干步骤&#xff0c;将每个步骤答案保…

python 去除验证码图片噪音

在处理验证码图片时&#xff0c;出现噪音&#xff0c;如横线、像素点等问题往往会影响识别率&#xff0c;这里给出一个去除噪音的方法&#xff0c;仅供学习。 import cv2 import os import numpy as np import copydef del_noise(img, number):height img.shape[0]width img…

JavaScript模块化

JavaScript模块化 一、CommonJS规范1、在node环境下的模块化导入、导出 2、浏览器环境下使用模块化browserify编译js 二、ES6模块化规范1、在浏览器端的定义和使用2、在node环境下简单使用方式一&#xff1a;方式二&#xff1a; 3、导出数据4、导入数据5、数据引用问题 一、Com…

前端:Vue学习 - 智慧商城项目

前端&#xff1a;Vue学习 - 智慧商城项目 1. vue组件库 > vant-ui2. postcss插件 > vw 适配3. 路由配置4. 登录页面静态布局4.1 封装axios实例访问验证码接口4.2 vant 组件 > 轻提示4.3 短信验证倒计时4.4 登录功能4.5 响应拦截器 > 统一处理错误4.6 登录权证信息存…

Mybatis学习(2)

分页 目的&#xff1a;减少数据的处理量 方式一&#xff1a;使用limit实现分页&#xff0c;核心SQL sql语法&#xff1a;select * from user limit startIndex&#xff0c;pageSize; 步骤&#xff1a; 1、接口 2、Mapper.xml 3、测试 方式二&#xff1a;使用注解开发 1、…

每日一题~EC168 A+B+C+D

A 题意&#xff1a; 字符串 每一个字符的花费是2&#xff0c;如果ai-1 ai ,那么ai 的花费是1. 现在可以插入一个字符&#xff0c;得到最大花费。输出插入字符之后的字符串。 分析&#xff1a;只需要在相同的连续字符中间插入一个不同的字符就可以了。如果没有连续的相同字符&am…

Python酷库之旅-第三方库Pandas(059)

目录 一、用法精讲 226、pandas.Series.pad方法 226-1、语法 226-2、参数 226-3、功能 226-4、返回值 226-5、说明 226-6、用法 226-6-1、数据准备 226-6-2、代码示例 226-6-3、结果输出 227、pandas.Series.replace方法 227-1、语法 227-2、参数 227-3、功能 …

最强开源模型 Llama 3.1 部署推理微调实战大全

目录 引言一、Llama 3.1简介二、Llama 3.1性能评估三、Llama 3.1模型推理实战1、环境准备2、安装依赖3、模型下载4、模型推理 四、Llama 3.1模型微调实战1、数据集准备2、导入依赖包3、读取数据集4、处理数据集5、定义模型6、Lora配置7、配置训练参数8、开始Trainer训练9、合并…

什么是负责任的人工智能

「AI秘籍」系列课程&#xff1a; 人工智能应用数学基础人工智能Python基础人工智能基础核心知识人工智能BI核心知识人工智能CV核心知识AI 进阶&#xff1a;企业项目实战 可直接在橱窗里购买&#xff0c;或者到文末领取优惠后购买&#xff1a; 拥有权利的同时也被赋予了重大的…

Modbus通讯协议

Modbus通讯协议 Modbus协议是一种用于电子控制器之间的通信协议&#xff0c;‌它允许不同类型的设备之间进行通信&#xff0c;‌以便进行数据交换和控制。‌Modbus协议最初为可编程逻辑控制器&#xff08;‌PLC&#xff09;‌通信开发&#xff0c;‌现已广泛应用于工业自动化领…

详细分析nohup后台运行命令

目录 1. 基本知识2. Demo 1. 基本知识 Unix/Linux 命令&#xff0c;用于在后台运行程序&#xff0c;并确保它在用户退出或注销后继续运行 nohup 的主要作用是使程序在终端会话结束后继续运行&#xff0c;这对需要长时间执行的任务特别有用 基本的用法如下&#xff1a; nohu…

3.1 拓扑排序

有向图的存储 邻接矩阵 邻接表 拓扑排序 有向无环图&#xff1a;不存在环的有向图 环&#xff1a; 在有向图中&#xff0c;从一个节点出发&#xff0c;最终回到它自身的路径被称为环 入度&#xff1a; 以节点x为终点的有向边的条数被称为x的入度 出度&#xff1a; 以节…

哈默纳科HarmonicDrive谐波减速机的使用寿命计算

在机械传动系统中&#xff0c;减速机的应用无处不在&#xff0c;而HarmonicDrive哈默纳科谐波减速机以其独特的优势&#xff0c;如轻量、小型、传动效率高、减速范围广、精度高等特点&#xff0c;成为了众多领域的选择。然而&#xff0c;任何机械设备都有其使用寿命&#xff0c…

数据集成是什么意思?方法有哪些?数据集成三种方法介绍

1 数据集成是什么 数据集成(Data Intergration)&#xff0c;也称为数据整合&#xff0c;是通过将分布式环境中的异构数据集成起来&#xff0c;为用户提供统一透明的数据访问方式。该定义中的集成是指从整体层面上维护数据的一致性&#xff0c;并提高对数据的利用和共享&#x…

【Redis 进阶】事务

Redis 的事务和 MySQL 的事务概念上是类似的&#xff0c;都是把一系列操作绑定成一组&#xff0c;让这一组能够批量执行。 一、Redis 的事务和 MySQL 事务的区别 1、MySQL 事务 原子性&#xff1a;把多个操作打包成一个整体。&#xff08;要么全都做&#xff0c;要么都不做&am…