C:初识指针—学习笔记

目录

前言:

1、内存和地址

1.1 理解内存和地址

1.2 理解编址

2、指针变量和地址

2.1 取地址操作符:&

2.2 指针变量

2.3 如何拆解指针类型

2.4 解引用操作符(*)

2.5 指针变量的大小

3、指针变量类型的意义

3.1 指针的解引用

3.2 指针+-整数

4、void* 指针

结语:


前言:

谈及指针,大部分人只有一个感觉:太难学了,好抽象啊!但是,请不要着急,今天当你看完这一篇后,相信你肯定能够理解什么是指针了。


1、内存和地址

1.1 理解内存和地址

在介绍指针前,我们需要先了解什么是内存和地址。

关于内存和地址,生活中有一个例子可以很好的解释它们

比如说你住在一栋宿舍楼,大楼内有100个房间,但是房间并没有编号。这时,你的一个朋友来找你玩,如果想找到你,就得一个房间一个房间的寻找,这样效率很低。但是,如果我根据楼层和楼层的房间的情况,给每一个房间都编上号,比如:

1楼:101 102 103……

当有了门牌号,这时候你只需要将门牌号告诉你朋友,他就可以很快速的找到房间,找到房间里的你。

如何将上面的例子抽象到计算机里呢?你可以理解宿舍楼就是内存,房间就是内存中的一个内存单元,房间里的你就是数据,而门牌号就是地址。

所以内存就是存储数据的空间

我们知道计算机上CPU(中央处理器)在处理数据的时候,需要的数据是在内存中读取的,处理后的数据也会放回内存中,那我们买电脑的时候,电脑上内存是8GB/16GB/32GB等,那这些内存空间如何高效的管理呢?

cpu从内存中读取数据,就好比是你朋友要在宿舍楼里找到你,而你朋友找你,也只是在一个个房间寻找。大楼里的一个一个房间的划分,让人们对大楼内的面积能够充分利用,而计算机中也是如此。内存的空间只有8GB/16GB/32GB,因此对于内存的合理运用也变的很重要。

计算机中把内存也划分为一个个的内存单元,每个内存单元的大小取1字节。

补充)计算机中常见的单位:

一个bit可以存储一个2进制位的1和0

地址(门牌号)内存(大楼)其中,每个内存单元,相当于⼀个学⽣宿舍,一
个字节空间里面能放8个比特位,就好比同学们住
的八⼈间,每个人是⼀个比特位。
0xFFFFFFFF(16进制1个字节
0xFFFFFFFE1个字节
1个字节

每个内存单元也都有⼀个编号(这个编号就相当
于宿舍房间的门牌号),有了这个内存单元的编
号,CPU就可以快速找到⼀个内存空间。

内存单元

生活中我们把门牌号也叫地址,在计算机中我们

把内存单元的编号也称为地址,
C语言中给地址起了新的名字叫:指针

1个字节
0x000000011个字节
0x000000001个字节

所以我们可以理解为:
内存单元的编号 == 地址 == 指针

1.2 理解编址

生活中关于我们可以看到通过宿舍门上的门牌号,直接找到我们想去的地方。门牌号是真实存在与宿舍门上的。而内存中的地址我们该怎么理解呢?

计算机中的编址,并不是把每个字节的地址记录下来,而是通过硬件设计完成的。

这就像钢琴,吉他上面没有刻上“剁、来、咪、发、 唆、拉、西”这样的信息,但演奏者照样能够准 确找到每⼀个琴弦的每⼀个位置,这是为何?因为制造商已经在乐器硬件层面上设计好了,并且 所有的演奏者都知道。本质是⼀种约定出来的共识!

有点抽象,举个例子:

图书馆里有一排排的书架,每个书架又有一层层的格子,这些格子就好比内存中的存储单元。

给每个格子编上号,也就是编址,就像是要给图书馆里的每个格子都贴上标签。

那这个标签是怎么贴上去的呢?这就得靠图书馆的“硬件设计”了。

比如说,书架的排列方式、格子的划分规则,就像是硬件的设计。

想象一下,书架是固定的,它们的位置和大小决定了格子的位置和数量,这就好比硬件决定了内存有多少个可以存储数据的地方。

然后,有一套专门的标记系统,就像特殊的机器或者装置,按照书架和格子的排列,给每个格子都印上编号,这就是通过硬件实现了编址。

那硬件设计又是怎么实现的呢?

首先,必须理解,计算机内是有很多的硬件单元,而硬件单元是要互相协同工作的。所谓的协 同,至少相互之间要能够进⾏数据传递。 但是硬件与硬件之间是互相独立的,那么如何通信呢?答案很简单,用"线"连起来。 ⽽CPU和内存之间也是有大量的数据交互的,所以,两者必须也用线连起来。通过地址总线,我们就可以了解什么是硬件编址了。

32位机器有32根地址总线, 每根线只有两态,表示0,1【电脉冲有无】,那么⼀根线,就能表示2种含义,2根线就表示4种含义,依次类推。32根地址线,就能表示2^32种含义,每⼀种含义都代表⼀个地址。 地址信息被下达给内存,在内存上,就可以找到 该地址对应的数据,将数据在通过数据总线传入CPU内寄存器。

内存编址这件事,是靠计算机里面那些实实在在的硬件设备,按照一定的规则和办法来做好的。

简单来说,计算机的编址是通过硬件设计把每一个内存单元的地址都固定好了,不需要把地址额外的存起来。

知识补充:

  1. 32位机器有32根地址总线64位机器有64根地址总线。
  2.  地址总线是实际存在的物理电线

2、指针变量和地址

当我们了解了内存和地址的关系后,就可以开始对指针的学习啦!

在C语言中变量创建的本质是向内存申请空间

比如说:int a = 10;

这串代码就相当于向内存内申请了4个字节,一个整型占4个字节,这串空间我们想存放的数据便是变量10。

2.1 取地址操作符:&

int main()
{int a = 0x11223344;//16进制数字return 0;
}

16进制0x11223344,一个16进制位可以改写为4个二进制位,因此,11223344可以改写为32个二进制位表示,刚好一个整型可以放下。

我们可以调试来看一下内存:

打开后,输入&a 并敲下回车键,列改为一行(记得在x86环境下观察,比较方便)

我们可以看到44,33,22,11都各占一个字节,每一个字节都有一个地址。

我们将列数改为4列再观察

从上面我们可以看到a确实向内存申请了4个空间。

读到这我们可能会有一个新的问题,欸,4个字节都有地址,那我们怎么知道a的地址是哪一个呢?

还记得前面调试的时候我们是怎么观察地址的吗?我们通过输入&a按下回车后出现了0x00E2FEC4,因此0x00E2FEC4便是a的地址,我们也可以发现这个地址和 44 所占字节的地址一样。

总结一下,&a取出的是a所占4个字节中地址较小的字节的地址

虽然整型变量占用4个字节,但是我们只要知道了第一个字节地址,顺藤摸瓜访问到4个字节的数据也是可行的。

代码展示一下,怎么打印地址

int main()
{int a = 0x11223344;printf("&a=%p\n", &a);return 0;	
}

知识补充:

  • &是取地址操作符,想要得到地址,就需要使用这个操作符
  •  %p:用来打印地址的占位符

结果展示:

和前面调试的结果不是一样,是因为在打印的时候又申请了新的空间。

2.2 指针变量

在我们之前学习的过程中,我们如果想要将一个整数存储起来,就会创建一个整型变量,比如我们想存储数字10,如下代码:

int main()
{int a = 10;return 0;	
}

我们通过创建了一个整型变量 a 来存储10。

那么如果我们想要将我们通过&得到的地址存储起来,有没有什么办法呢?我们可以将地址存储在指针变量中。比如我们想要存放 n 的地址

int main()
{int a = 10;int * pn = &n;return 0;	
}

解读:int * pn = &n;

1、pn被称为指针变量

为什么呢?

&n——n的地址——地址就是指针

pn = &n;

pn就是用来存放地址的,也可以说是用来存放指针的

指针变量就是存放指针的变量。

可以通过和整型变量来理解指针变量,

整型变量:a就是用来存放整数的。

2、int * 被称为指针类型

int a = 10;
int * pn = &n;

对比就可以发现,int是整数的类型,int*是指针的类型。

2.3 如何拆解指针类型

上文说到了之指针的类型是(int *),那么我们该如何理解指针类型呢?

pn的类型是int *,我们需要分别理解

  • *:说明pn是指针变量
  • int:说明pn指向的对象是int类型
char ch = 'x';

如果我们想要存放x的地址该怎么写呢?

 char * pc = &ch;

这样我们就存放了x的地址

告诉我们pc是指针

char则告诉我们指针指向的对象是char类型。

2.4 解引用操作符(*)

当我们将地址保存起来后,是为了后面能够使用,那么我们该怎么使用呢?

在现实生活中,我们使用地址要找到⼀个房间,在房间里可以拿去或者存放物品。

C语言中其实也是⼀样的,我们只要拿到了地址(指针),就可以通过地址(指针)找到地址(指针) 指向的对象,这里必须学习⼀个操作符叫解引用操作符(*)。

int main()
{int n = 10;int * pn = &n;//解引用操作符(间接访问操作符)*pn = 100;printf("%d", n);return 0;	
}

上述代码中的*pn就使用了解引用操作符, *pn 的意思就是通过pn中存放的地址,找到指向的空间, *pn其实就是n变量了;所以*pn=100,这个操作符是把n改成了100.

从结果上看,n的值的确被改为了100

或许通过这个例子你会觉得指针有是什么用?如果只是想修改n的值,为什么不直接写一个n=100呢?这样不是更方便吗?

其实这里是把n的修改交给了pn来操作,这样对n的修改,就多了⼀种的途径,写代码就会更加灵活, 后期慢慢就能理解了。

其实这里有一个很好的例子能说明指针的作用,生活中,有些事情是不方便自己去做的,因此呢,就需要委托别人来代替你做,比如说一个老板想要喝奶茶,但是他不会自己顶着大太阳出去买,而是会吩咐他的秘书取帮他完成,差不多就是这样,可能有些不恰当,见谅哈!

2.5 指针变量的大小

我们知道我们创建一个整型变量int的大小是4个字节,字符变量char的大小是1个字节,那么指针变量的大小又是多少呢?

思考过程:

指针变量存放的是地址,地址的存放需要多大的空间呢?知道地址存放的空间就是指针变量的大小

也就是说指针变量的大小取决与地址的大小

通过前面的内容我们了解到,32位机器假设有32根地址总线,每根地址线出来的电信号转换成数字信号后 是1或者0,那我们把32根地址线产生的2进制序列当做⼀个地址,那么⼀个地址就是32个bit位,需要4个字节才能存储。

如果指针变量是用来存放地址的,那么指针变的大小就得是4个字节的空间才可以。

同理64位机器,假设有64根地址线,⼀个地址就是64个二进制位组成的⼆进制序列,存储起来就需要 8个字节的空间,指针变量的大小就是8个字节。

int main()
{int n = 10;int * pn = &n;printf("%zd\n", sizeof(pn));return 0;	
}

在32位机器上: 可以看到打印的大小是4个字节

在64位机器上: 可以看到打印的大小是8个字节

那么指针类型是否会影响指针变量的大小呢?我们来测试一下

int main()
{	printf("%zd\n", sizeof(int*));//整型printf("%zd\n", sizeof(char*));//字符printf("%zd\n", sizeof(short*));//短整型printf("%zd\n", sizeof(double*));//双精度浮点型return 0;	
}

在32位系统上结果:

在64位系统上结果

我们可以看到,不管指针类型是什么,都不会影响指针变量的大小,指针类型的变量大小,在相同平台下,大小都是相同的。

总结:

  •  32位平台下地址是32个bit位,指针变量大小是4个字节
  •  64位平台下地址是64个bit位,指针变量大小是8个字节 X64环境输出结果
  •  注意指针变量的大小和类型是无关的,只要指针类型的变量,在相同的平台下,大小都是相同的。

3、指针变量类型的意义

既然指针变量大小与指针类型无关,那么为什么还要搞指针的变量类型呢?

3.1 指针的解引用

int main()
{int n = 0x11223344;int* pi = &n;*pi = 0;return 0;
}

调试过程:(注意观察内存里的值

运行到292行时内存展示44 33 22 11

当经过*pi = 0 之后

内存里4个字节全部变为了 0 

如果我们不用int *的指针类型,改为char *的类型,结果又是如何呢?

我们可以看到只是将n的第⼀个字节改为0。

我们可以看到int类型指针可以访问4个字节,而char类型指针只访问了1个字节。

通过对比,我们可以得到一个结论

结论:指针的类型决定了,对指针解引用的时候有多大的权限(一次能操作几个字节)。

3.2 指针+-整数

int main()
{int n = 0x11223344;int* pi = &n;char* pc = &n;		printf("&n = %p\n", &n);printf("pi = %p\n", pi);printf("pi+1 = %p\n", pi+1);printf("pc = %p\n", pc);printf("pc+1= %p\n", pc+1);return 0;
}

结果: 

我们可以发现, char* 类型的指针变量+1跳过1个字节, int* 类型的指针变量+1跳过了4个字节。 这就是指针变量的类型差异带来的变化。指针+1,其实跳过1个指针指向的元素。指针可以+1,那也可以-1。

结论:指针的类型决定了指针向前或者向后走一步有多大(距离)。

4、void* 指针

void的意思是无,或者空

所以void*指针是无具体为无具体类型的指针(或者叫泛型指针),这种类型的指针可以用来接受任意类型地址。但是也有局限性, void* 类型的指针不能直接进行指针的+-整数和解引用的运算。 

int main()
{int n = 10;char* pc = &n;return 0;
}

在上面的代码中,将⼀个int类型的变量的地址赋值给⼀个char*类型的指针变量。编译器给出了⼀个警告(如下图),是因为类型不兼容。而是用void*类型就不会有这样的问题。


使用void*类型的指针接收地址就不会出现警告

void* 类型的指针不能直接进行指针的+-整数和解引用的运算

int main()
{int n = 10;void* pc = &n;*pc = 20;return 0;
}

当我们想运行的时候,就会报下面这个错误 

 void* 类型的指针可以接收不同类型的地址,但是无法直接进行指针运算。

这是因为void*是一个无具体类型的指针,当进行解运算的时候,没法确定访问几个字节。

既然如此,那void*有什么作用呢?

专门用来存放别人传送过来的地址,当你不知道别人给你传的是什么类型的指针的时候,就可以使用void*来存放,当需要进行解运算的时候,在使用强制类型转换来实现。

比如:

int main()
{int n = 10;void* pc = &n;*(int*)pc = 20;return 0;
}

 这样就将类型强制转换成了整型指针,结果就可以打印出来了


结语:

本篇文章主要讲了指针的基本知识,通过本篇文章能够了解什么是指针,指针变量,指针类型是什么。后面会继续更新指针相关知识,希望能够帮助大家攻克指针这一模块。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/389849.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言:指针(2)

一.数组名 在了解数组名前我们先看一段代码 int arr[10] {1,2,3,4,5,6,7,8,9,10}; int *p &arr[0]; 根据我们上一篇学习的知识&#xff0c;我们知道&arr[0]是数组第一个元素的地址&#xff0c;这时我们再看另一段代码的运行结果。 #include <stdio.h> int ma…

Hadoop的安装和使用-2024年08月01日

Hadoop的安装和使用-2024年08月01日 1.创建Hadoop用户2.SSH登陆权限设置3.java的安装4.Hadoop单机安装配置5.Hadoop伪分布式安装配置 1.创建Hadoop用户 如果安装Ubuntu的时候不是用的“hadoop”用户&#xff0c;那么需要增加一个名为 hadoop的用户首先按ctrlaltt打开终端窗口&…

患者特征对AI算法在解释阴性筛查数字乳腺断层摄影研究中的表现的影响| 文献速递-AI辅助的放射影像疾病诊断

Title 题目 Patient Characteristics Impact Performance of AI Algorithm in Interpreting Negative Screening Digital Breast Tomosynthesis Studies 患者特征对AI算法在解释阴性筛查数字乳腺断层摄影研究中的表现的影响 Background 背景 Artificial intelligence (AI)…

新书速览|AI创意商业广告设计:Adobe Firefly + Photoshop

《AI创意商业广告设计:Adobe Fire.yPhotoshop》 本书内容 随着AI技术的出现&#xff0c;平面设计领域也出现了利用人工智能进行创作的程序&#xff0c;比如Firefly、Midjourney、 Stable Di.usion等。这些程序能够创作出高质量的设计作品。其中&#xff0c;Fire.y是由Adobe公司…

【C++】C++应用案例-通讯录管理系统

目录 一、整体介绍 1.1、需求和目标 1.2、整体功能描述 二、页面及功能描述 2.1 主菜单 2.2 添加联系人菜单 2.3 显示联系人菜单 2.4 修改联系人菜单 2.5 退出功能 三、流程设计 3.1 主流程 3.2 添加操作流程 3.3 显示联系人操作流程 3.4 修改联系人操作流程 四…

面试中的算法 [ 持续更新中 ] 基于Python语言 如何判断链表有环

本文主要介绍了如何判断链表有环的问题&#xff0c;并进行了延伸&#xff1a; 如果链表有环如何求出环的长度&#xff0c;入环节点... ...嗯&#xff0c;点个赞总可以不&#xff01;&#xff01;&#xff01; 目录 5.1如何判断链表有环 5.1.1 有一个单向链表&#xff0c;链表…

web端使用HTML5开发《贪吃蛇》小游戏教程【附源码】

自制游戏列表 1植物大战僵尸自制HTML5游戏《植物大战僵尸》2开心消消乐自制HTML5游戏《开心消消乐》3贪吃蛇自制HTML5游戏《贪吃蛇》4捕鱼达人自制HTML5游戏《捕鱼达人》 一、游戏简介 贪吃蛇是一款经典的电子游戏&#xff0c;最早在1976年由Gremlin公司推出&#xff0c;名为…

SimGCL graph contrastive learning by finding homophily in heterophily

发表于: Knowledge and Information Systems, ccfb 推荐指数: #paper/ ⭐ 总结: 重新定义了相似度矩阵, 重新定义了特征, 重新设计了节点删除概率等, 但是, 换汤不换药, 引入了大量的超参 (快 10 个了吧). 创新点不够, 所以 ccf B 期刊理所应该. (甚至我觉得更低) 相关知识: 本…

智慧水务项目(三)django(drf)+angular 18 创建系统管理的用户、角色、部门、权限管理等model

一、说明 添加各model 添加requirement.txt中的库 添加env.py中的动态配置 二、env.py全文 import os from smartwater.settings import BASE_DIR# # # ************** mysql数据库 配置 ************** # # # # 数据库地址 DATABASE_ENGINE "django.db.backends.…

深入理解 C 语言中的联合体

目录 引言 一、 联合体的定义与基本用法 1.联合体的定义 2.基本用法 二、 联合体与结构体的区别 1.结构体 2.联合体 3.对比 ​编辑三、联合体的优势 1. 节省内存 2. 提高效率 3. 代码简洁性 四、联合体的存储细节 1.内存对齐 2.大小计算 五、联合体的高级用法…

windows中node版本的切换(nvm管理工具),解决项目兼容问题 node版本管理、国内npm源镜像切换(保姆级教程,值得收藏)

前言 在工作中&#xff0c;我们可能同时在进行2个或者多个不同的项目开发&#xff0c;每个项目的需求不同&#xff0c;进而不同项目必须依赖不同版本的NodeJS运行环境&#xff0c;这种情况下&#xff0c;对于维护多个版本的node将会是一件非常麻烦的事情&#xff0c;nvm就是为…

JDK-java.nio包详解

JDK-java.nio包详解 概述 一直以来Java三件套&#xff08;集合、io、多线程&#xff09;都是最热门的Java基础技术点&#xff0c;我们要深入掌握好这三件套才能在日常开发中得心应手&#xff0c;之前有编写集合相关的文章&#xff0c;这里出一篇文章来梳理一下io相关的知识点。…

现代前端架构介绍(第三部分):深入了解状态管理层及其对前端App的影响

远离JavaScript疲劳和框架大战&#xff0c;了解真正重要的东西 在第二部分中&#xff0c;我们讨论了功能架构的三个层次。其中一个就是状态管理层&#xff0c;今天我们将对其进行更深入的探讨。下面是现代前端架构系列的第三部分和最后一部分介绍。 状态管理&#xff0c;你可能…

全球轻型汽车市场规划预测:2030年市场规模将接近2502亿元,未来六年CAGR为2.8%

一、引言 随着全球经济的发展和消费者出行需求的增加&#xff0c;轻型汽车作为汽车市场中的重要组成部分&#xff0c;其市场重要性日益凸显。本文旨在探索轻型汽车行业的发展趋势、潜在商机及其未来展望。 二、市场趋势 全球轻型汽车市场的增长主要受全球经济发展、消费者对出…

MySQL基础练习题19-查找拥有有效邮箱的用户

题目&#xff1a;查找具有有效电子邮件的用户 准备数据 分析数据 总结 题目&#xff1a;查找具有有效电子邮件的用户 一个有效的电子邮件具有前缀名称和域&#xff0c;其中&#xff1a; 前缀 名称是一个字符串&#xff0c;可以包含字母&#xff08;大写或小写&#xff09;&…

QtQuick Text-对齐方式

属性 Text项目 的horizontalAlignment和verticalAlignment分别用来设置文本在 Text项目区域中的水平、垂直对齐方式。 默认文本在左上方。 属性值有&#xff1a; horizontalAlignment Text.AlignLeftText.AlignRightText.AlignHCenterText.Justify verticalAlignment Text.…

js 前端 解析excel文件【.xlsx文件】信息内容

需求&#xff1a; 从excel文件中解析里面的内容 1、使用插件xlsx.full.min.js&#xff0c;地址&#xff1a;https://unpkg.com/xlsx/dist/xlsx.full.min.js实例&#xff1a; <script src"https://unpkg.com/xlsx/dist/xlsx.full.min.js"></script><i…

关于inet_addr()中的参数不能是 sring类型的 只能是 string类型变量.c_str()

源码展示&#xff1a; extern in_addr_t inet_addr (const char *__cp) __THROW inet_addr中的参数是const char *类型的 定义一个string 类型的ip 使用这个inet_addr()接口 local.sin_addr.s_addr inet_addr(ip_.c_str()); local.sin_addr.s_addr inet_addr(&ip_);…

(超全)Kubernetes 的核心组件解析

引言 在现代软件开发和运维的世界中&#xff0c;容器化技术已经成为一种标志性的解决方案&#xff0c;它为应用的构建、部署和管理提供了前所未有的灵活性和效率。然而&#xff0c;随着应用规模的扩大和复杂性的增加&#xff0c;单纯依靠容器本身来管理这些应用和服务已不再足够…

零基础入门转录组数据分析——机器学习算法之SVM-RFE(筛选特征基因)

零基础入门转录组数据分析——机器学习算法之SVM-RFE&#xff08;筛选特征基因&#xff09; 目录 零基础入门转录组数据分析——机器学习算法之SVM-RFE&#xff08;筛选特征基因&#xff09;1. SVM-RFE基础知识2. SVM-RFE&#xff08;Rstudio&#xff09;——代码实操2. 1 数据…