[matlab] 鲸鱼优化算法优化KNN分类器的特征选择

目录

引言

智能优化算法概述

智能优化算法在KNN特征选择中的应用

应用步骤

UCI数据集

鲸鱼优化算法

一、算法背景与原理

二、算法组成与步骤

三、算法特点与优势

四、应用与挑战

代码实现

鲸鱼优化算法

主程序

打印结果


引言

智能优化算法在优化KNN(K近邻算法)特征选择中的应用,主要是通过模拟自然界中群体行为或生物进化过程来搜索最优的特征子集,以提高KNN模型的分类或回归性能。以下是一些常用的智能优化算法及其在KNN特征选择中的应用概述:

智能优化算法概述

智能优化算法主要包括演化算法和群体智能算法两大类。演化算法如遗传算法(GA)通过模拟生物进化过程中的选择、交叉和变异等操作来寻找最优解。群体智能算法则通过观察社会生物群体的行为,如蚁群算法(ACO)、粒子群优化算法(PSO)等,来搜索最优解。

智能优化算法在KNN特征选择中的应用

  1. 遗传算法(GA)
    • 原理:遗传算法基于Darwin进化论和Mendel的遗传学说,通过模拟自然选择和遗传机制来搜索最优解。
    • 应用:在KNN特征选择中,遗传算法可以将每个特征的选择与否编码为染色体上的基因,通过选择、交叉和变异等操作来迭代优化特征子集,最终找到适应度最高的特征组合。
  2. 粒子群优化算法(PSO)
    • 原理:粒子群优化算法模拟鸟群觅食行为,通过粒子之间的合作与竞争来寻找最优解。每个粒子代表一个解(在这里是特征子集),粒子根据个体最优和全局最优位置更新自己的位置和速度。
    • 应用:在KNN特征选择中,粒子群算法可以通过将特征子集编码为粒子的位置,并通过迭代优化找到适应度最高的特征子集。二进制粒子群算法(BPSO)特别适用于处理离散优化问题,如特征选择。
  3. 蚁群算法(ACO)
    • 原理:蚁群算法模拟蚂蚁觅食过程中信息素的积累和跟随行为,通过候选解之间的信息交流来搜索最优解。
    • 应用:在KNN特征选择中,蚁群算法可以将每个特征的选择与否视为蚂蚁的路径选择,通过信息素的积累和更新来指导搜索过程,最终找到最优的特征子集。
  4. 灰狼优化算法(GWO)
    • 原理:灰狼优化算法模拟灰狼的社会层次和狩猎策略,通过Alpha、Beta、Delta和Omega四个等级的灰狼之间的协作来搜索最优解。
    • 应用:在KNN特征选择中,灰狼优化算法可以将特征子集视为猎物,通过模拟灰狼的狩猎行为来迭代优化特征子集,最终找到最优的特征组合。

应用步骤

  1. 问题定义:明确KNN模型需要优化的目标(如分类准确率、回归误差等)和特征选择的范围。

  2. 算法选择:根据问题的特性和需求选择合适的智能优化算法。

  3. 编码与初始化:将特征选择问题编码为算法可处理的格式(如染色体、粒子位置等),并初始化算法参数和种群。

  4. 适应度评估:定义适应度函数来评估每个特征子集的优劣,通常使用KNN模型在验证集上的性能作为评估标准。

  5. 迭代优化:根据算法规则进行迭代优化,更新特征子集和算法参数,直到满足停止条件(如达到最大迭代次数、适应度不再显著提升等)。

  6. 结果分析:分析最终得到的特征子集对KNN模型性能的影响,并与其他特征选择方法进行比较。


UCI数据集

Breast Cancer Wisconsin (Diagnostic) 数据集是一个经典的医学数据集,最初由威斯康星州医院的Dr. William H. Wolberg收集。该数据集包含了乳腺癌患者的诊断结果和相关生理参数的统计信息,如肿块的大小、形状、边缘、质地、细胞核大小、细胞核形状等。这些特征是通过图像分析得到的,并用于预测乳腺癌的恶性程度和诊断结果。


鲸鱼优化算法

鲸鱼优化算法(Whale Optimization Algorithm,简称WOA)是一种由澳大利亚格里菲斯大学的Mirjalili等人于2016年提出的新型群体智能优化搜索方法。该算法模拟了自然界中座头鲸群体的狩猎行为,通过模拟鲸鱼群的自组织和自适应性来寻找最优解。以下是对鲸鱼优化算法的详细介绍:

一、算法背景与原理

背景
鲸鱼在海洋中的行为特点包括分布式、自主、智能和适应性强等特点,这些特点使得鲸鱼在寻找食物和逃脱敌人方面具有很高的效率。鲸鱼优化算法旨在将这些优点应用于解决复杂的优化问题,如机器学习、数据挖掘、计算机视觉等领域。

原理
WOA算法模拟了座头鲸的狩猎行为,主要包括包围猎物、螺旋攻击猎物(发泡网攻击)和随机搜索猎物三个主要动作。算法将当前最优候选解作为目标猎物(最优解),鲸鱼群根据当前自身与猎物位置的关系更新位置,通过搜索、包围和捕食行为来更新候选解,逐步逼近最优解。

二、算法组成与步骤

算法组成
WOA算法的主要组成部分包括鲸鱼群的表示、鲸鱼的行为和互动以及适应性评价。鲸鱼群可以用一组向量来表示,每个向量代表一个鲸鱼的位置和速度。鲸鱼在寻找食物和避免敌人时会进行探索和互动行为,这些行为会影响鲸鱼群的动态过程。而鲸鱼群的适应性则通过评价函数来衡量,目标是找到使评价函数值最小的解。

算法步骤

  1. 初始化鲸鱼群:随机生成一组鲸鱼的位置和速度作为算法的初始状态。
  2. 计算适应度:根据评价函数计算鲸鱼群的适应性评价值。
  3. 更新鲸鱼位置
    • 包围猎物:鲸鱼群会向当前最优解(猎物)靠拢。
    • 螺旋攻击猎物:模拟座头鲸的螺旋吐泡泡行为,通过螺旋方程更新鲸鱼位置。
    • 随机搜索猎物:当随机数满足一定条件时,鲸鱼会进行随机搜索,以跳出局部最优解。
  4. 迭代更新:重复上述步骤,每次迭代都更新鲸鱼的位置,直到满足停止条件(如达到最大迭代次数或解的质量满足要求)。

三、算法特点与优势

特点

  • 收敛速度快:WOA算法在求解优化问题时表现出较快的收敛速度。
  • 全局搜索能力强:通过随机搜索和螺旋攻击等机制,WOA算法能够有效避免陷入局部最优解。
  • 算法简单易实现:WOA算法的原理和步骤相对简单,易于编程实现。

优势

  • WOA算法在解决复杂的优化问题时具有较高的效率和适应性。
  • 它已经被成功应用于多个领域,如机器学习、数据挖掘、计算机视觉等。

四、应用与挑战

应用
鲸鱼优化算法在多个领域都有广泛的应用,包括但不限于:

  • 机器学习模型的参数优化
  • 数据挖掘中的聚类分析
  • 计算机视觉中的图像分割和识别

挑战
尽管WOA算法具有诸多优势,但在实际应用中也面临一些挑战:

  • 参数设置敏感:算法的性能受参数设置影响较大,需要根据具体问题进行调整和优化。
  • 对初始解的依赖:算法的性能可能受到初始解质量的影响。
  • 高维问题处理:在处理高维优化问题时,算法的性能可能会下降。

代码实现

鲸鱼优化算法


% The Whale Optimization Algorithm
function [Leader_score,Leader_pos,Convergence_curve]=WOA(SearchAgents_no,Max_iter,lb,ub,dim,trainData,testData,trainlabel,testlabel)% initialize position vector and score for the leader
Leader_pos=zeros(1,dim);
Leader_score=inf; %change this to -inf for maximization problems%Initialize the positions of search agents
Positions=round(initialization(SearchAgents_no,dim,ub,lb));Convergence_curve=zeros(1,Max_iter);t=0;% Loop counter% Main loop
while t<Max_iterfor i=1:size(Positions,1)     % Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;% Calculate objective function for each search agentPositions(i,:) = checkempty(Positions(i,:),dim);fitness=objfun((Positions(i,:)),trainData,testData,trainlabel,testlabel,dim);% Update the leaderif fitness<Leader_score % Change this to > for maximization problemLeader_score=fitness; % Update alphaLeader_pos=Positions(i,:);endenda=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)% a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)a2=-1+t*((-1)/Max_iter);% Update the Position of search agents for i=1:size(Positions,1)r1=rand(); % r1 is a random number in [0,1]r2=rand(); % r2 is a random number in [0,1]A=2*a*r1-a;  % Eq. (2.3) in the paperC=2*r2;      % Eq. (2.4) in the paperb=1;               %  parameters in Eq. (2.5)l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)p = rand();        % p in Eq. (2.6)for j=1:size(Positions,2)if p<0.5   if abs(A)>=1rand_leader_index = floor(SearchAgents_no*rand()+1);X_rand = Positions(rand_leader_index, :);D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8)elseif abs(A)<1D_Leader=abs(C*Leader_pos(j)-Positions(i,j)); % Eq. (2.1)Positions(i,j)=Leader_pos(j)-A*D_Leader;      % Eq. (2.2)endelseif p>=0.5distance2Leader=abs(Leader_pos(j)-Positions(i,j));% Eq. (2.5)Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j);endendendt=t+1;Convergence_curve(t)=Leader_score;[t Leader_score]
end

主程序

clc;
clear;%导入并划分数据集
load breast-cancer-wisconsinfor ii=1:size(data,2)nanindex=isnan(data(:,ii));data(nanindex,:)=[];
end
labels=data(:,end);                  
attributesData=data(:,1:end-1);    [rows,colms]=size(attributesData);  %数据集大小   [trainIdx,~,testIdx]=dividerand(rows,0.8,0,0.2);
trainData=attributesData(trainIdx,:);   %训练集
testData=attributesData(testIdx,:);     %测试集
trainlabel=labels(trainIdx,:);            %训练集标签
testlabel=labels(testIdx,:);              %测试集标签%调用fitcknn工具箱,进行KNN初始化聚类,得到聚类精度
Mdl = fitcknn(trainData,trainlabel,'NumNeighbors',5,'Standardize',1);
predictedLables_KNN=predict(Mdl,testData);
cp=classperf(testlabel,predictedLables_KNN);
err=cp.ErrorRate;  
accuracy=cp.CorrectRate;%定义WOA优化目标函数,以KNN聚类精度为目标
dim=size(attributesData,2);
lb=0;ub=1; 
SearchAgents_no=30; % 种群大小
Max_iteration=200; %最大迭代次数[Target_score,Target_pos,WOA_cg_curve]=WOA(SearchAgents_no,Max_iteration,lb,ub,dim,trainData,testData,trainlabel,testlabel);[error_WOA,accuracy_WOA,predictedLables_WOA]=finalEval(Target_pos,trainData,testData,trainlabel,testlabel); % 打印最优特征选择
fprintf('最优特征选择:\n');
for i = 1:length(Target_pos)if Target_pos(i) == 1fprintf('Feature %d\n', i);end
end

打印结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/395295.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最大耗散功率

注&#xff1a;本文内容来自ChatGPT 最大耗散功率&#xff08;Maximum Power Dissipation&#xff09;是指芯片或电子元件在指定的工作条件下&#xff0c;能够安全散发的最大热功率&#xff0c;通常以瓦特&#xff08;W&#xff09;为单位表示。这是一个关键的设计参数&#x…

什么是Stable Diffusion?如何安装Stable Diffusion?

前言 Stable Diffusion秋叶整合包&#xff0c;一键安装Stable Diffusion&#xff0c;门槛极低&#xff0c;完全免费&#xff0c;支持Nvidia全系列显卡。 来自B站up主秋葉aaaki近期推出的Stable Diffusion整合包v4.6版本&#xff0c;能够让零基础用户轻松在本地部署Stable Diff…

Scanner类、String类和StringBuffer类的相关使用

一、Scanner: 主要用于键盘录入的 构造方法&#xff1a; Scanner(InputStream source) 构造一个新的 Scanner &#xff0c;产生从指定输入流扫描的值。 1、next()和nextLine()区别&#xff1a; String line sc.next(); // 不会接收特殊字符&#xff0c;比如空格回…

Python中的 `continue` 语句:掌握循环控制的艺术

Python中的 continue 语句&#xff1a;掌握循环控制的艺术 下滑即可查看博客内容 &#x1f308; 欢迎莅临我的个人主页 &#x1f448;这里是我静心耕耘深度学习领域、真诚分享知识与智慧的小天地&#xff01;&#x1f387; &#x1f393; 博主简介&#xff1a;985高校的普通…

服务器数据恢复—Raid故障导致存储中数据库数据丢失的数据恢复案例

服务器存储数据恢复环境&故障情况&#xff1a; 一台光纤存储中有一组由16块硬盘组成的raid。 该存储出现故障导致数据丢失。RAID中2块盘掉线&#xff0c;还有1块盘smart状态为“警告”。 服务器存储数据恢复过程&#xff1a; 1、通过该存储自带的存储管理软件将当前存储的完…

企业常用的文件加密软件排行榜,10款顶级文件加密软件推荐

在数字化时代&#xff0c;企业数据的安全性和保密性显得尤为重要。为了确保敏感文件不被未授权访问或泄露&#xff0c;企业纷纷采用文件加密软件来加强数据保护。以下是2024年企业常用的10款顶级文件加密软件推荐&#xff0c;它们各具特色&#xff0c;能够满足不同企业的需求。…

【第十届泰迪杯数据挖掘挑战赛A题害虫识别】-农田害虫检测识别-高精度完整更新

农田害虫检测识别项目-高精度完整版 一、说明&#xff1a; 该版本为基于泰迪杯完整害虫数据重新制作数据集、优化增强数据集、重新进行模型训练&#xff0c;达到高精度、高召回率的最优模型代码。包含论文、最优模型文件以及相关文件、原始数据集、训练数据集XML版、增强扩充…

【数据结构】哈希应用-海量数据处理

目录 1、10亿个整数里面求最大的100个 2、求大文件交集 3、查找出现次数前210的ip地址 1、10亿个整数里面求最大的100个 经典的tok问题&#xff0c;可以使用堆来解决 2、求大文件交集 给两个文件&#xff0c;分别有100亿个query&#xff0c;我们只有1G内存&#xff0c;如…

如何用 CocosCreator 对接抖音小游戏的侧边栏复访

前言 最近小游戏的软著下来了&#xff0c;用 CocosCreator 做的游戏也完成了 1.0 版本。而当我打包成抖音小游戏进行提交时&#xff0c;还没到初审就给拒了&#xff0c;因为还有一个机审&#xff0c;机器检测到代码中没有接入 “侧边栏复访功能”。这个我还真不知道&#xff0…

不要问人工智能能为你做什么,而要问你能用人工智能实现什么?

​新前沿 欢迎来到雲闪世界。在过去的一年半里&#xff0c;我一直在向我认识的每个人讲述人工智能的潜力&#xff0c;尤其是大型语言模型 (LLM)。无论技术背景如何&#xff0c;现在是时候让每个人学习 LLM 的基础知识以及如何有效地使用它们了。 20 世纪 60 年代&#xff0c;我…

美国服务器稳定么?影响服务器稳定性的6个因素

美国服务器稳定么&#xff1f;美国服务器的稳定性是相当不错的&#xff0c;这主要得益于其先进的技术、成熟的基础设施以及严格的管理措施。美国拥有众多知名的服务器提供商&#xff0c;这些提供商通常会采用顶级的硬件设施&#xff0c;如英特尔、AMD等知名品牌的处理器&#x…

以树莓集团的视角:探索AI技术如何重塑数字媒体产业发展

在科技日新月异的今天&#xff0c;AI技术如同一股不可阻挡的潮流&#xff0c;正深刻改变着我们的世界&#xff0c;尤其是数字媒体产业发展。作为数字产业生态链的杰出建设者&#xff0c;树莓集团始终站在时代前沿&#xff0c;积极探索AI技术如何为数字媒体产业注入新活力。 在树…

NFTScan 正式上线 Gravity NFTScan 浏览器和 NFT API 数据服务

2024 年 8 月 9 号&#xff0c;NFTScan 团队正式对外发布了 Gravity NFTScan 浏览器&#xff0c;将为 Gravity 生态的 NFT 开发者和用户提供简洁高效的 NFT 数据搜索查询服务。NFTScan 作为全球领先的 NFT 数据基础设施服务商&#xff0c;Gravity 是继 Bitcoin、Ethereum、BNBC…

修改nacos实力权重或者对某实例下线报错

在Nacos控制台进行上述操作&#xff0c;错误信息 caused: errCode: 500, errMsg: do metadata operation failed ;caused: com.alibaba.nacos.consistency.exception.ConsistencyException: The Raft Group [naming_instance_metadata] did not find the Leader node;caused:…

IIS部署Linux环境下的cer证书步骤

1. 获取Linux环境的cer证书 Linux环境下的cer证书位于&#xff1a;root/.acme.sh 下&#xff0c;下载到Windows服务器。 2. 将cer证书转为pfx证书 IIS导入证书的时候只支持pfx格式证书&#xff0c;所以需要转换一下&#xff0c;确保Windows服务器上已安装openssl工具&#x…

GD 32 IIC通信协议

前言&#xff1a; ... 通信方式 通信方式分为串行通信和并行通信。常见的串口就是串行通信的方式 常用的串行通信接口 常用的串行通信方式有USART,IIC,USB,CAN总线 同步与异步 同步通信&#xff1a;IIC是同步通信&#xff0c;有两个线一个是时钟信号线&#xff0c;一个数数据…

【工具类】JAVA (Android Studio )+ JS 加密解密 AES + Base 64

JAVA &#xff08;Android Studio &#xff09; JS 加密解密 AES Base 64 前言JAVA 代码&#xff08;解密&#xff09;JS代码&#xff08;加密&#xff09; 前言 整个过程&#xff1a; JS 接口先用AES加密&#xff0c;然后加密内容转Base64 编码&#xff1b;JAVA进行Base64解…

三十二、【人工智能】【机器学习】【监督学习】- XGBoost算法模型

系列文章目录 第一章 【机器学习】初识机器学习 第二章 【机器学习】【监督学习】- 逻辑回归算法 (Logistic Regression) 第三章 【机器学习】【监督学习】- 支持向量机 (SVM) 第四章【机器学习】【监督学习】- K-近邻算法 (K-NN) 第五章【机器学习】【监督学习】- 决策树…

将PPT中的元素保存为高清图片

PPT制作流程图&#xff0c;思维导图或者演示图片非常方便&#xff0c;本文主要记录如何将一个在PPT中画好的图片导出为高清图片。 1.在ppt中设计图片 以我在PPT中画的图片为例&#xff0c;将所有元素选中&#xff0c;右键组合&#xff0c;成为一个整体 2.另存为增强型元文件 …

vscode 快速生成vue 格式

1.用快捷Ctrl Shift P唤出控制台 输入“Snippets”并选择 Snippets: Configure User Snippets 2.输入vue&#xff0c;选中vue.json vs code自动生成vue.json文件 3.在 vue.json 中添加模板 {"Print to console": {"prefix": "vue2","b…