【扒网络架构】backbone、ccff

backbone 

CCFF 

还不知道网络连接方式,只是知道了每一层

 

backbone

  1. backbone.backbone.conv1.weight torch.Size([64, 3, 7, 7])
  2. backbone.backbone.layer1.0.conv1.weight torch.Size([64, 64, 1, 1])
  3. backbone.backbone.layer1.0.conv2.weight torch.Size([64, 64, 3, 3])
  4. backbone.backbone.layer1.0.conv3.weight torch.Size([256, 64, 1, 1])
  5. backbone.backbone.layer1.0.downsample.0.weight torch.Size([256, 64, 1, 1])
  6. backbone.backbone.layer1.1.conv1.weight torch.Size([64, 256, 1, 1])
  7. backbone.backbone.layer1.1.conv2.weight torch.Size([64, 64, 3, 3])
  8. backbone.backbone.layer1.1.conv3.weight torch.Size([256, 64, 1, 1])
  9. backbone.backbone.layer1.2.conv1.weight torch.Size([64, 256, 1, 1])
  10. backbone.backbone.layer1.2.conv2.weight torch.Size([64, 64, 3, 3])
  11. backbone.backbone.layer1.2.conv3.weight torch.Size([256, 64, 1, 1])
  12. backbone.backbone.layer2.0.conv1.weight torch.Size([128, 256, 1, 1])
  13. backbone.backbone.layer2.0.conv2.weight torch.Size([128, 128, 3, 3])
  14. backbone.backbone.layer2.0.conv3.weight torch.Size([512, 128, 1, 1])
  15. backbone.backbone.layer2.0.downsample.0.weight torch.Size([512, 256, 1, 1])
  16. backbone.backbone.layer2.1.conv1.weight torch.Size([128, 512, 1, 1])
  17. backbone.backbone.layer2.1.conv2.weight torch.Size([128, 128, 3, 3])
  18. backbone.backbone.layer2.1.conv3.weight torch.Size([512, 128, 1, 1])
  19. backbone.backbone.layer2.2.conv1.weight torch.Size([128, 512, 1, 1])
  20. backbone.backbone.layer2.2.conv2.weight torch.Size([128, 128, 3, 3])
  21. backbone.backbone.layer2.2.conv3.weight torch.Size([512, 128, 1, 1])
  22. backbone.backbone.layer2.3.conv1.weight torch.Size([128, 512, 1, 1])
  23. backbone.backbone.layer2.3.conv2.weight torch.Size([128, 128, 3, 3])
  24. backbone.backbone.layer2.3.conv3.weight torch.Size([512, 128, 1, 1])
  25. backbone.backbone.layer3.0.conv1.weight torch.Size([256, 512, 1, 1])
  26. backbone.backbone.layer3.0.conv2.weight torch.Size([256, 256, 3, 3])
  27. backbone.backbone.layer3.0.conv3.weight torch.Size([1024, 256, 1, 1])
  28. backbone.backbone.layer3.0.downsample.0.weight torch.Size([1024, 512, 1, 1])
  29. backbone.backbone.layer3.1.conv1.weight torch.Size([256, 1024, 1, 1])
  30. backbone.backbone.layer3.1.conv2.weight torch.Size([256, 256, 3, 3])
  31. backbone.backbone.layer3.1.conv3.weight torch.Size([1024, 256, 1, 1])
  32. backbone.backbone.layer3.2.conv1.weight torch.Size([256, 1024, 1, 1])
  33. backbone.backbone.layer3.2.conv2.weight torch.Size([256, 256, 3, 3])
  34. backbone.backbone.layer3.2.conv3.weight torch.Size([1024, 256, 1, 1])
  35. backbone.backbone.layer3.3.conv1.weight torch.Size([256, 1024, 1, 1])
  36. backbone.backbone.layer3.3.conv2.weight torch.Size([256, 256, 3, 3])
  37. backbone.backbone.layer3.3.conv3.weight torch.Size([1024, 256, 1, 1])
  38. backbone.backbone.layer3.4.conv1.weight torch.Size([256, 1024, 1, 1])
  39. backbone.backbone.layer3.4.conv2.weight torch.Size([256, 256, 3, 3])
  40. backbone.backbone.layer3.4.conv3.weight torch.Size([1024, 256, 1, 1])
  41. backbone.backbone.layer3.5.conv1.weight torch.Size([256, 1024, 1, 1])
  42. backbone.backbone.layer3.5.conv2.weight torch.Size([256, 256, 3, 3])
  43. backbone.backbone.layer3.5.conv3.weight torch.Size([1024, 256, 1, 1])
  44. backbone.backbone.layer4.0.conv1.weight torch.Size([512, 1024, 1, 1])
  45. backbone.backbone.layer4.0.conv2.weight torch.Size([512, 512, 3, 3])
  46. backbone.backbone.layer4.0.conv3.weight torch.Size([2048, 512, 1, 1])
  47. backbone.backbone.layer4.0.downsample.0.weight torch.Size([2048, 1024, 1, 1])
  48. backbone.backbone.layer4.1.conv1.weight torch.Size([512, 2048, 1, 1])
  49. backbone.backbone.layer4.1.conv2.weight torch.Size([512, 512, 3, 3])
  50. backbone.backbone.layer4.1.conv3.weight torch.Size([2048, 512, 1, 1])
  51. backbone.backbone.layer4.2.conv1.weight torch.Size([512, 2048, 1, 1])
  52. backbone.backbone.layer4.2.conv2.weight torch.Size([512, 512, 3, 3])
  53. backbone.backbone.layer4.2.conv3.weight torch.Size([2048, 512, 1, 1])
  54. backbone.backbone.fc.weight torch.Size([1000, 2048])
  55. backbone.backbone.fc.bias torch.Size([1000])

ccf

  1. ccff.conv1.conv.weight torch.Size([3584, 3584, 1, 1])
  2. ccff.conv1.norm.weight torch.Size([3584])
  3. ccff.conv1.norm.bias torch.Size([3584])
  4. ccff.conv2.conv.weight torch.Size([3584, 3584, 1, 1])
  5. ccff.conv2.norm.weight torch.Size([3584])
  6. ccff.conv2.norm.bias torch.Size([3584])
  7. ccff.bottlenecks.0.conv1.conv.weight torch.Size([3584, 3584, 3, 3])
  8. ccff.bottlenecks.0.conv1.norm.weight torch.Size([3584])
  9. ccff.bottlenecks.0.conv1.norm.bias torch.Size([3584])
  10. ccff.bottlenecks.0.conv2.conv.weight torch.Size([3584, 3584, 1, 1])
  11. ccff.bottlenecks.0.conv2.norm.weight torch.Size([3584])
  12. ccff.bottlenecks.0.conv2.norm.bias torch.Size([3584])
  13. ccff.bottlenecks.1.conv1.conv.weight torch.Size([3584, 3584, 3, 3])
  14. ccff.bottlenecks.1.conv1.norm.weight torch.Size([3584])
  15. ccff.bottlenecks.1.conv1.norm.bias torch.Size([3584])
  16. ccff.bottlenecks.1.conv2.conv.weight torch.Size([3584, 3584, 1, 1])
  17. ccff.bottlenecks.1.conv2.norm.weight torch.Size([3584])
  18. ccff.bottlenecks.1.conv2.norm.bias torch.Size([3584])
  19. ccff.bottlenecks.2.conv1.conv.weight torch.Size([3584, 3584, 3, 3])
  20. ccff.bottlenecks.2.conv1.norm.weight torch.Size([3584])
  21. ccff.bottlenecks.2.conv1.norm.bias torch.Size([3584])
  22. ccff.bottlenecks.2.conv2.conv.weight torch.Size([3584, 3584, 1, 1])
  23. ccff.bottlenecks.2.conv2.norm.weight torch.Size([3584])
  24. ccff.bottlenecks.2.conv2.norm.bias torch.Size([3584])

input_proj

  1. input_proj.weight torch.Size([256, 3584, 1, 1])
  2. input_proj.bias torch.Size([256])

encoder

  1. encoder.layers.0.norm1.weight torch.Size([256])
  2. encoder.layers.0.norm1.bias torch.Size([256])
  3. encoder.layers.0.norm2.weight torch.Size([256])
  4. encoder.layers.0.norm2.bias torch.Size([256])
  5. encoder.layers.0.self_attn.in_proj_weight torch.Size([768, 256])
  6. encoder.layers.0.self_attn.in_proj_bias torch.Size([768])
  7. encoder.layers.0.self_attn.out_proj.weight torch.Size([256, 256])
  8. encoder.layers.0.self_attn.out_proj.bias torch.Size([256])
  9. encoder.layers.0.mlp.linear1.weight torch.Size([2048, 256])
  10. encoder.layers.0.mlp.linear1.bias torch.Size([2048])
  11. encoder.layers.0.mlp.linear2.weight torch.Size([256, 2048])
  12. encoder.layers.0.mlp.linear2.bias torch.Size([256])
  13. encoder.layers.1.norm1.weight torch.Size([256])
  14. encoder.layers.1.norm1.bias torch.Size([256])
  15. encoder.layers.1.norm2.weight torch.Size([256])
  16. encoder.layers.1.norm2.bias torch.Size([256])
  17. encoder.layers.1.self_attn.in_proj_weight torch.Size([768, 256])
  18. encoder.layers.1.self_attn.in_proj_bias torch.Size([768])
  19. encoder.layers.1.self_attn.out_proj.weight torch.Size([256, 256])
  20. encoder.layers.1.self_attn.out_proj.bias torch.Size([256])
  21. encoder.layers.1.mlp.linear1.weight torch.Size([2048, 256])
  22. encoder.layers.1.mlp.linear1.bias torch.Size([2048])
  23. encoder.layers.1.mlp.linear2.weight torch.Size([256, 2048])
  24. encoder.layers.1.mlp.linear2.bias torch.Size([256])
  25. encoder.layers.2.norm1.weight torch.Size([256])
  26. encoder.layers.2.norm1.bias torch.Size([256])
  27. encoder.layers.2.norm2.weight torch.Size([256])
  28. encoder.layers.2.norm2.bias torch.Size([256])
  29. encoder.layers.2.self_attn.in_proj_weight torch.Size([768, 256])
  30. encoder.layers.2.self_attn.in_proj_bias torch.Size([768])
  31. encoder.layers.2.self_attn.out_proj.weight torch.Size([256, 256])
  32. encoder.layers.2.self_attn.out_proj.bias torch.Size([256])
  33. encoder.layers.2.mlp.linear1.weight torch.Size([2048, 256])
  34. encoder.layers.2.mlp.linear1.bias torch.Size([2048])
  35. encoder.layers.2.mlp.linear2.weight torch.Size([256, 2048])
  36. encoder.layers.2.mlp.linear2.bias torch.Size([256])
  37. encoder.norm.weight torch.Size([256])
  38. encoder.norm.bias torch.Size([256])

ope

  1. ope.iterative_adaptation.layers.0.norm1.weight torch.Size([256])
  2. ope.iterative_adaptation.layers.0.norm1.bias torch.Size([256])
  3. ope.iterative_adaptation.layers.0.norm2.weight torch.Size([256])
  4. ope.iterative_adaptation.layers.0.norm2.bias torch.Size([256])
  5. ope.iterative_adaptation.layers.0.norm3.weight torch.Size([256])
  6. ope.iterative_adaptation.layers.0.norm3.bias torch.Size([256])
  7. ope.iterative_adaptation.layers.0.self_attn.in_proj_weight torch.Size([768, 256])
  8. ope.iterative_adaptation.layers.0.self_attn.in_proj_bias torch.Size([768])
  9. ope.iterative_adaptation.layers.0.self_attn.out_proj.weight torch.Size([256, 256])
  10. ope.iterative_adaptation.layers.0.self_attn.out_proj.bias torch.Size([256])
  11. ope.iterative_adaptation.layers.0.enc_dec_attn.in_proj_weight torch.Size([768, 256])
  12. ope.iterative_adaptation.layers.0.enc_dec_attn.in_proj_bias torch.Size([768])
  13. ope.iterative_adaptation.layers.0.enc_dec_attn.out_proj.weight torch.Size([256, 256])
  14. ope.iterative_adaptation.layers.0.enc_dec_attn.out_proj.bias torch.Size([256])
  15. ope.iterative_adaptation.layers.0.mlp.linear1.weight torch.Size([2048, 256])
  16. ope.iterative_adaptation.layers.0.mlp.linear1.bias torch.Size([2048])
  17. ope.iterative_adaptation.layers.0.mlp.linear2.weight torch.Size([256, 2048])
  18. ope.iterative_adaptation.layers.0.mlp.linear2.bias torch.Size([256])
  19. ope.iterative_adaptation.layers.1.norm1.weight torch.Size([256])
  20. ope.iterative_adaptation.layers.1.norm1.bias torch.Size([256])
  21. ope.iterative_adaptation.layers.1.norm2.weight torch.Size([256])
  22. ope.iterative_adaptation.layers.1.norm2.bias torch.Size([256])
  23. ope.iterative_adaptation.layers.1.norm3.weight torch.Size([256])
  24. ope.iterative_adaptation.layers.1.norm3.bias torch.Size([256])
  25. ope.iterative_adaptation.layers.1.self_attn.in_proj_weight torch.Size([768, 256])
  26. ope.iterative_adaptation.layers.1.self_attn.in_proj_bias torch.Size([768])
  27. ope.iterative_adaptation.layers.1.self_attn.out_proj.weight torch.Size([256, 256])
  28. ope.iterative_adaptation.layers.1.self_attn.out_proj.bias torch.Size([256])
  29. ope.iterative_adaptation.layers.1.enc_dec_attn.in_proj_weight torch.Size([768, 256])
  30. ope.iterative_adaptation.layers.1.enc_dec_attn.in_proj_bias torch.Size([768])
  31. ope.iterative_adaptation.layers.1.enc_dec_attn.out_proj.weight torch.Size([256, 256])
  32. ope.iterative_adaptation.layers.1.enc_dec_attn.out_proj.bias torch.Size([256])
  33. ope.iterative_adaptation.layers.1.mlp.linear1.weight torch.Size([2048, 256])
  34. ope.iterative_adaptation.layers.1.mlp.linear1.bias torch.Size([2048])
  35. ope.iterative_adaptation.layers.1.mlp.linear2.weight torch.Size([256, 2048])
  36. ope.iterative_adaptation.layers.1.mlp.linear2.bias torch.Size([256])
  37. ope.iterative_adaptation.layers.2.norm1.weight torch.Size([256])
  38. ope.iterative_adaptation.layers.2.norm1.bias torch.Size([256])
  39. ope.iterative_adaptation.layers.2.norm2.weight torch.Size([256])
  40. ope.iterative_adaptation.layers.2.norm2.bias torch.Size([256])
  41. ope.iterative_adaptation.layers.2.norm3.weight torch.Size([256])
  42. ope.iterative_adaptation.layers.2.norm3.bias torch.Size([256])
  43. ope.iterative_adaptation.layers.2.self_attn.in_proj_weight torch.Size([768, 256])
  44. ope.iterative_adaptation.layers.2.self_attn.in_proj_bias torch.Size([768])
  45. ope.iterative_adaptation.layers.2.self_attn.out_proj.weight torch.Size([256, 256])
  46. ope.iterative_adaptation.layers.2.self_attn.out_proj.bias torch.Size([256])
  47. ope.iterative_adaptation.layers.2.enc_dec_attn.in_proj_weight torch.Size([768, 256])
  48. ope.iterative_adaptation.layers.2.enc_dec_attn.in_proj_bias torch.Size([768])
  49. ope.iterative_adaptation.layers.2.enc_dec_attn.out_proj.weight torch.Size([256, 256])
  50. ope.iterative_adaptation.layers.2.enc_dec_attn.out_proj.bias torch.Size([256])
  51. ope.iterative_adaptation.layers.2.mlp.linear1.weight torch.Size([2048, 256])
  52. ope.iterative_adaptation.layers.2.mlp.linear1.bias torch.Size([2048])
  53. ope.iterative_adaptation.layers.2.mlp.linear2.weight torch.Size([256, 2048])
  54. ope.iterative_adaptation.layers.2.mlp.linear2.bias torch.Size([256])
  55. ope.iterative_adaptation.norm.weight torch.Size([256])
  56. ope.iterative_adaptation.norm.bias torch.Size([256])

ope.shape_or_objectness

  1. ope.shape_or_objectness.0.weight torch.Size([64, 2])
  2. ope.shape_or_objectness.0.bias torch.Size([64])
  3. ope.shape_or_objectness.2.weight torch.Size([256, 64])
  4. ope.shape_or_objectness.2.bias torch.Size([256])
  5. ope.shape_or_objectness.4.weight torch.Size([2304, 256])
  6. ope.shape_or_objectness.4.bias torch.Size([2304])

回归头

  1. regression_head.regressor.0.layer.0.weight torch.Size([128, 256, 3, 3])
  2. regression_head.regressor.0.layer.0.bias torch.Size([128])
  3. regression_head.regressor.1.layer.0.weight torch.Size([64, 128, 3, 3])
  4. regression_head.regressor.1.layer.0.bias torch.Size([64])
  5. regression_head.regressor.2.layer.0.weight torch.Size([32, 64, 3, 3])
  6. regression_head.regressor.2.layer.0.bias torch.Size([32])
  7. regression_head.regressor.3.weight torch.Size([1, 32, 1, 1])
  8. regression_head.regressor.3.bias torch.Size([1])

辅助头

  1. aux_heads.0.regressor.0.layer.0.weight torch.Size([128, 256, 3, 3])
  2. aux_heads.0.regressor.0.layer.0.bias torch.Size([128])
  3. aux_heads.0.regressor.1.layer.0.weight torch.Size([64, 128, 3, 3])
  4. aux_heads.0.regressor.1.layer.0.bias torch.Size([64])
  5. aux_heads.0.regressor.2.layer.0.weight torch.Size([32, 64, 3, 3])
  6. aux_heads.0.regressor.2.layer.0.bias torch.Size([32])
  7. aux_heads.0.regressor.3.weight torch.Size([1, 32, 1, 1])
  8. aux_heads.0.regressor.3.bias torch.Size([1])
  9. aux_heads.1.regressor.0.layer.0.weight torch.Size([128, 256, 3, 3])
  10. aux_heads.1.regressor.0.layer.0.bias torch.Size([128])
  11. aux_heads.1.regressor.1.layer.0.weight torch.Size([64, 128, 3, 3])
  12. aux_heads.1.regressor.1.layer.0.bias torch.Size([64])
  13. aux_heads.1.regressor.2.layer.0.weight torch.Size([32, 64, 3, 3])
  14. aux_heads.1.regressor.2.layer.0.bias torch.Size([32])
  15. aux_heads.1.regressor.3.weight torch.Size([1, 32, 1, 1])
  16. aux_heads.1.regressor.3.bias torch.Size([1])


Total number of parameters in LOCA: 447974251

Total number of parameters in CCFF: 411099136(这个模块,参数量好大)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/395770.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Datawhale AI夏令营第四期 | AIGC文生图——可图Kolors-LoRA风格故事 Task1笔记

Hi,大家好,我是半亩花海。最近在尝试学习AIGC的内容,并报名参加了Datawhale举办的2024年AI第四期夏令营,主要学习内容是从零入门AI生图原理和实践。本次活动基于魔搭社区“可图Kolors-LoRA风格故事挑战赛”进而开展的项目实践学习…

【最新】推荐6款论文ai写论文软件推荐网站平台

在当前的学术研究和写作环境中,AI写作工具已经成为许多学者和学生的重要助手。这些工具不仅能够提高写作效率,还能帮助优化文章结构、润色语言以及进行查重等任务。以下将推荐六款优秀的AI写论文软件,并详细介绍它们的功能和特点。 1. 千笔-…

C语言 ——— 学习并使用memset函数

目录 memset函数的功能 学习memset函数​编辑 使用memset函数 memset函数的功能 memset函数是内存设置函数,将数据设置成传递的参数,以字节来设置 学习memset函数 函数的参数: void* ptr:数据要设置的起始位置的指针 int …

【代码随想录】区间和——前缀和方法

本博文为《代码随想录》学习笔记,原文链接:代码随想录 题目 原题链接:58. 区间和(第九期模拟笔试) 题目描述 给定一个整数数组 Array,请计算该数组在每个指定区间内元素的总和。 输入描述 第一行输入为…

VS /PROFILE(性能工具探查器)的使用

/PROFILE(性能工具探查器) 在 Visual Studio 开发环境中设置此链接器选项 打开项目的“属性页” 对话框。 有关详细信息,请参阅在 Visual Studio 中设置 C 编译器和生成属性。 选择“配置属性”>“链接器”>“高级”属性页。 修改配…

动态规划之——背包DP(完结篇)

文章目录 概要说明分组背包模板例题1思路code模板例题2思路code 有依赖的背包问题模板例题思路code 背包问题求方案数模板例题思路code 背包问题求具体方案模板例题思路code 概要说明 本文讲分组背包、有依赖的背包、 背包问题求方案数以及背包问题求具体方案 入门篇(01背包和…

STM32G070KBT6的RTC HAL库使用

*配置问题 首先使能时钟源,这里在时钟配置中选择LSI,为什么后面会说,然后使能Calender结构体,保证可以对RTC的年月日时分秒等进行写入和读取;alarmA和alarmB是闹钟,这里不用就Disable; Tam…

ShardingSphere之ShardingProxy集群部署

文章目录 介绍使用Zookeeper进行集群部署统一ShardingJDBC和ShardingProxy配置通过Zookeeper注册中心同步配置直接使用ShardingProxy提供的JDBC驱动读取配置文件 介绍 开发者手册 在conf/server.yaml配置文件中有下面这一段配置,就是关于集群部署的 mode: # typ…

极狐GitLab CICD Catalog Beta 功能介绍

极狐GitLab 是 GitLab 在中国的发行版,专门面向中国程序员和企业提供企业级一体化 DevOps 平台,用来帮助用户实现需求管理、源代码托管、CI/CD、安全合规,而且所有的操作都是在一个平台上进行,省事省心省钱。可以一键安装极狐GitL…

视觉SLAM中的数学基础01 -3D空间的位置表示

在视觉SLAM中,理解和表示3D空间中的位置是至关重要的。这涉及到多种数学概念和工具,如坐标系、向量、矩阵、旋转和平移等。这些数学基础构成了视觉SLAM算法的核心。以下是3D空间位置表示的基本数学概念。 这是一个表示世界坐标系和相机坐标系之间关系的3…

JNPF快速开发平台赋能数字办公方式转变

随着信息技术的飞速发展,数字化转型已成为各行各业提升效率、优化流程的重要手段。JNPF快速开发平台正是在这样的背景下应运而生,它通过简化开发流程,使得非技术人员也能参与到应用的构建中来,从而加速了数字办公方式的转变。 数字…

畅捷通基于Flink的实时数仓落地实践

摘要:本文整理自畅捷通总架构师、阿里云MVP专家郑芸老师在 Flink Forward Asia 2023 中闭门会上的分享。内容主要为以下四部分: 业务背景数仓建设具体案例未来展望 一、业务背景 畅捷通是用友旗下成员企业,一直持续专注于小微企业的数字化转…

4K YouTube to MP3 Pro:跨平台音频提取与转换的好用工具

4K YouTube to MP3 Pro是一款专为追求高品质音频体验的用户设计的跨平台(支持Mac与Windows)音频提取与转换软件。该软件以其卓越的音频提取能力和简便的操作流程,在同类产品中脱颖而出,成为众多用户的心头好。 功能强大&#xff…

AI革新3D建模:Stable Fast 3D工具的高效应用——图片快速生成3D模型

在3D建模领域,AI技术的介入正引发一场革命。Stable Diffusion(SD)的最新应用——Stable Fast 3D,为快速生成3D模型提供了一个强大的解决方案。以下是对这项技术及其应用的详细介绍和优化建议。 一、工具概览 Stable Fast 3D模型:这是一个基于AI的3D模型生成工具,可通过H…

社交电商系统:技术融合与商业创新

一、引言 随着社交平台的普及和电商系统的不断发展,社交电商系统作为一种新型的商业模式应运而生。这种模式结合了传统电子商务和社交媒体的优势,为消费者和商家提供了一个全新的购物和销售环境。本文将深入探讨社交电商系统的技术架构、主要模式、优势以…

每日学术速递8.8

1.Rethinking temporal self-similarity for repetitive action counting 标题:重新思考重复动作计数的时间自相似性 作者: Yanan Luo, Jinhui Yi, Yazan Abu Farha, Moritz Wolter, Juergen Gall 文章链接:https://arxiv.org/abs/2407.09…

LVS(Linux Virtual Server)详解

LVS(Linux Virtual Server)是一个用于负载均衡的开源软件项目,旨在通过集群技术实现高性能、高可用的服务器系统。它运行在Linux操作系统上,并且可以利用内核级的资源来提高性能和稳定性。 思维导图 LVS的工作原理 LVS主要基于Ne…

【树的遍历】

题目 代码 #include<bits/stdc.h> using namespace std;const int N 40;int in[N], pos[N]; //中序、后序 int idx[N]; //中序的值->索引 unordered_map<int, int> l, r; //根节点的左、右树根节点 int n; int build(int il, int ir, int pl, int pr) {int ro…

vite + tsc 打包报TS类型错误问题及解决方法

当新建vue3项目&#xff0c;package.json文件会自动添加一些配置选项&#xff0c; 这些选项基本没有问题&#xff0c;但是在实际操作过程中&#xff0c;列举一个目前我遇到的一个问题&#xff1a;打包后报了一堆TS类型错误&#xff0c;怎么消除这些错误&#xff1f; 报错信息&a…

ubuntu20从docker安装到制作自己的镜像使用记录

ubuntu20从docker安装到制作自己的镜像使用记录 第一章&#xff1a;配置环境 1.ubuntu20 2.docker镜像18.04 3.参考&#xff1a;https://www.runoob.com/docker/docker-tutorial.html 第二章&#xff1a;安装docker 一、安装docker 参考1&#xff1a;Ubuntu安装docker并运…