动态规划~01背包问题

01背包问题
经典的0 - 1背包问题的解决方案。


二维数组的版本

代码功能概述

0 - 1背包问题指的是有 n 个物品和一个容量为 m 的背包,每个物品有对应的体积 v[i] 和价值 w[i],需要从这些物品里挑选若干个放入背包,让背包内物品的总价值达到最大。每个物品仅能选择放入或者不放入背包(即0 - 1选择)。

代码详细解释

#include<bits/stdc++.h>
using namespace std;// 定义长整型别名
typedef long long LL;
// 定义数组的最大长度
const int N=1100;// f[i][j] 表示前 i 个物品,背包容量为 j 时的最大价值
int f[N][N];
// v[i] 表示第 i 个物品的体积,w[i] 表示第 i 个物品的价值
int v[N],w[N];int main(){// n 表示物品的数量,m 表示背包的容量int n,m;// 从标准输入读取物品数量和背包容量cin>>n>>m;// 循环读取每个物品的体积和价值for(int i = 1;i<=n;i++){cin>>v[i]>>w[i];}// 动态规划求解过程for(int i = 1;i <= n;i++){for(int j = 1;j <= m;j++){// 如果当前背包容量 j 小于第 i 个物品的体积 v[i],则不能放入第 i 个物品if(j < v[i])// 最大价值等于前 i - 1 个物品在容量 j 下的最大价值f[i][j] = f[i-1][j];else// 可以选择放入或不放入第 i 个物品,取两者中的最大值f[i][j] = max(f[i-1][j],f[i-1][j-v[i]]+w[i]);}}// 输出前 n 个物品,背包容量为 m 时的最大价值cout<<f[n][m];return 0;
}

代码核心逻辑

  • 状态定义f[i][j] 代表前 i 个物品,背包容量为 j 时所能获得的最大价值。
  • 状态转移
    • j < v[i],也就是当前背包容量不足以放入第 i 个物品,那么 f[i][j] = f[i - 1][j]
    • j >= v[i],则可以选择放入或者不放入第 i 个物品:
      • 不放入:f[i][j] = f[i - 1][j]
      • 放入:f[i][j] = f[i - 1][j - v[i]] + w[i]
    • 取这两种情况的最大值作为 f[i][j] 的值。
  • 最终结果f[n][m] 即为前 n 个物品,背包容量为 m 时的最大价值。

复杂度分析

  • 时间复杂度 O ( n m ) O(nm) O(nm),这里的 n 是物品的数量,m 是背包的容量。
  • 空间复杂度 O ( n m ) O(nm) O(nm),主要是用于存储状态数组 f

要将你的二维动态规划代码优化为一维数组,可以利用动态规划的状态转移只依赖于上一行的状态这一特性。通过从右到左更新一维数组,可以避免覆盖还未使用的状态,从而实现空间优化。


一维数组的版本

优化后的代码

#include <bits/stdc++.h>
using namespace std;const int N = 1100;int f[N]; // 一维动态规划数组,f[j] 表示凑出金额 j 所需的最大价值
int v[N], w[N]; // v[i] 表示第 i 个物品的体积,w[i] 表示第 i 个物品的价值int main() {int n, m;cin >> n >> m; // 输入物品数量 n 和背包容量 mfor (int i = 1; i <= n; i++) {cin >> v[i] >> w[i]; // 输入每个物品的体积和价值}// 初始化动态规划数组memset(f, 0, sizeof(f)); // 初始时,所有金额的最大价值为 0// 动态规划求解for (int i = 1; i <= n; i++) { // 遍历每个物品for (int j = m; j >= v[i]; j--) { // 从大到小遍历背包容量f[j] = max(f[j], f[j - v[i]] + w[i]); // 更新状态}}// 输出结果cout << f[m] << endl; // 输出凑出金额 m 的最大价值return 0;
}

代码解释

1. 一维数组的定义
  • 原代码使用二维数组 f[i][j] 表示前 i 个物品在背包容量为 j 时的最大价值。
  • 优化后,使用一维数组 f[j] 表示背包容量为 j 时的最大价值。
  • 因为状态转移只依赖于上一行的状态,所以可以用一维数组代替二维数组。
2. 从右到左更新
  • 在更新 f[j] 时,f[j - v[i]] 表示未选择当前物品时的状态。
  • 如果从左到右更新(如 for (int j = v[i]; j <= m; j++)),会导致 f[j - v[i]] 被当前物品更新过,从而出现重复选择当前物品的情况。
  • 因此,必须从右到左更新(如 for (int j = m; j >= v[i]; j--)),确保每个物品只被选择一次。
3. 状态转移方程
  • 状态转移方程保持不变:
    f [ j ] = max ⁡ ( f [ j ] , f [ j − v [ i ] ] + w [ i ] ) f[j] = \max(f[j], f[j - v[i]] + w[i]) f[j]=max(f[j],f[jv[i]]+w[i])
    • f[j] 表示不选择当前物品时的最大价值。
    • f[j - v[i]] + w[i] 表示选择当前物品时的最大价值。
4. 初始化
  • 初始化 f 数组为 0,表示在没有物品时,所有背包容量的最大价值都为 0。
5. 输出结果
  • 最终结果存储在 f[m] 中,表示背包容量为 m 时的最大价值。

复杂度分析

时间复杂度
  • 外层循环遍历物品数量 n n n,内层循环遍历背包容量 m m m
  • 时间复杂度为 O ( n × m ) O(n \times m) O(n×m)
空间复杂度
  • 使用了一维数组 f,空间复杂度为 O ( m ) O(m) O(m)

注意事项

  1. 从右到左更新的重要性

    • 如果改为从左到右更新(如 for (int j = v[i]; j <= m; j++)),会导致每个物品被多次选择,变成 完全背包问题 的解法。
    • 因此,在 0-1 背包问题 中,必须从右到左更新。
  2. 适用场景

    • 这段代码适用于 0-1 背包问题,即每个物品只能选择一次。
    • 如果是 完全背包问题(每个物品可以无限次选择),需要将状态转移方程改为 f[j] = max(f[j], f[j - v[i]] + w[i]),并且内层循环改为从左到右更新。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/39930.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

报错 standard_init_linux.go:228: exec user process caused: exec format error

docker logs 容器名 报错&#xff1a; standard_init_linux.go:228: exec user process caused: exec format error 或者 standard_init_linux.go:228: exec user process caused: input/output error 排查思路 1、检查源镜像的框架是否正确&#xff0c;是否amd64&#x…

26考研——图_图的存储(6)

408答疑 文章目录 二、图的存储图的存储相关概念邻接矩阵存储方式邻接矩阵的定义顶点的度计算邻接矩阵的特点邻接矩阵的局限性 应用场景邻接矩阵的幂次意义&#xff08;了解即可&#xff09; 邻接表存储方式邻接表定义邻接表结构邻接表的特点 邻接矩阵和邻接表的适用性差异十字…

机器学习(八)

一&#xff0c;基于协同过滤的推广算法&#xff1a; 算法原理&#xff1a; 基于用户的协同过滤(计算用户相似度→找出相似用户→根据相似用户的喜好推荐物品) 基于物品的协同过滤(计算物品相似度→找出用户喜欢的物品→推荐相似物品) 构造矩阵进行分解(将用户-物品评分矩阵分解…

云原生算力引擎:分布式推理的流体动力学

引言&#xff1a;算力黑洞的引力扰动 OpenAI推理集群日处理4.5亿次请求&#xff0c;CUDA 12.3实现μs级张量切换。特斯拉Dojo超算芯片间延迟0.5ns&#xff0c;阿里巴巴PAI平台节省58%训练时长。HuggingFace模型库下载量突破3亿次&#xff0c;AWS Inferentia芯片能效比提升8倍。…

流量分析2

一&#xff0c;webshell流量 [GKCTF 2021]签到 先看协议分级&#xff0c;大部分是tcp&#xff0c;里面有http的基于的行文本数据占了很大的比重&#xff0c;看看里面有什么 过滤http的流量 点击一条流量&#xff0c;里面的内容进去后面有基于行的文本数据&#xff0c; 先解he…

解锁智能协作:蓝耘平台如何打破应用壁垒,实现无缝联动

在当今快速发展的数字化时代&#xff0c;企业面临着越来越复杂的应用架构与系统集成挑战。传统的孤立系统已无法满足现代企业对于高效协作与数据共享的需求&#xff0c;因此&#xff0c;如何实现不同应用系统间的无缝联动&#xff0c;成为了数字化转型的关键课题。蓝耘平台作为…

3月25号

添加图片的一些例子: // 创建一个二维数组,用来管理数据int[][] data new int[4][4]; // 记录空白方块的位置int x0;int y0; // 定义一个变量,记录当前展示图片的路径String path"E:\\java\\jigsawgame\\路飞\\路飞"; // 加载图片细节: // …

单片机和微控制器知识汇总——《器件手册--单片机、数字信号处理器和可编程逻辑器件》

目录 四、单片机和微控制器 4.1 单片机(MCU/MPU/SOC) 一、定义 二、主要特点 三、工作原理 四、主要类型 五、应用领域 六、选型与设计注意事项 七、发展趋势 4.2 数字信号处理器(DSP/DSC) ​编辑​编辑 一、定义 二、工作原理 三、结构特点 四、应用领域 五、选型与设计注…

迷宫问题——(java)(bfs)

2.走迷宫 - 蓝桥云课 bfs :我的理解就是按层数便利&#xff0c;便利完一层再遍历下一层 bfs:一般用来求解权相等的最短路径和最小操作数的问题 一般使用队列来实现 1.初始化队列 先将起始节点放入队列中 2.从队列中取出一个没有访问过的节点&#xff0c;将该节点的访问状态…

Axure大屏可视化模板:赋能多领域,开启数据展示新篇章

在当今这个数据爆炸的时代&#xff0c;数据已经成为各行各业的核心资产。然而&#xff0c;如何高效、直观地展示数据&#xff0c;并将其转化为有价值的决策依据&#xff0c;成为了许多企业和组织面临的共同挑战。Axure大屏可视化模板&#xff0c;作为一款强大的数据展示工具&am…

Linux--进程控制

ok&#xff0c;我们今天学习Linux中的进程控制&#xff08;进程创建、终止、等待、替换&#xff09; 进程创建 fork函数 在linux中fork函数是⾮常重要的函数&#xff0c;它从已存在进程中创建⼀个新进程。新进程为子进程&#xff0c;⽽原进程为父进程。 #include <unist…

【开源宝藏】用 JavaScript 手写一个丝滑的打字机动画效果

你当前项目实现了一个非常丝滑的 打字机文字效果动画&#xff0c;使用的是自定义的 typical.js 脚本。下面我将给出一份逐步拆解的中文教程&#xff0c;帮你或其他初学者快速上手并自定义这个打字效果。 ✨ 最终效果 打开页面后&#xff0c;中央会逐字显示&#xff1a; Hello…

UE4学习笔记 FPS游戏制作17 让机器人持枪 销毁机器人时也销毁机器人的枪 让机器人射击

添加武器插槽 打开机器人的Idle动画&#xff0c;方便查看武器位置 在动画面板里打开骨骼树&#xff0c;找到右手的武器节点&#xff0c;右键添加一个插槽&#xff0c;重命名为RightWeapon&#xff0c;右键插槽&#xff0c;添加一个预览资产&#xff0c;选择Rifle&#xff0c;根…

气象可视化卫星云图的方式:方法与架构详解

气象卫星云图是气象预报和气候研究的重要数据来源。通过可视化技术,我们可以将卫星云图数据转化为直观的图像或动画,帮助用户更好地理解气象变化。本文将详细介绍卫星云图可视化的方法、架构和代码实现。 一、卫星云图可视化方法 1. 数据获取与预处理 卫星云图数据通常来源…

26考研——树与二叉树_树、森林(5)

408答疑 文章目录 二、树、森林树的基本概念树的定义和特性树的定义树的特性 基本术语树的基本术语和概念祖先、子孙、双亲、孩子、兄弟和堂兄弟结点的层次、度、深度和高度树的度和高度分支结点和叶结点有序树和无序树路径和路径长度 森林的基本术语和概念森林的定义森林与树的…

为何服务器监听异常?

报错&#xff1a; 执行./RCF后出现监听异常--在切换网络后&#xff0c;由于前面没有退出./RCF执行状态&#xff1b;重新连接后&#xff0c;会出现服务器监听异常 原因如下&#xff1a; 由于刚开始登录内网&#xff0c;切换之后再重新登录内网&#xff0c;并且切换网络的过程中…

ROS2 架构梳理汇总整理

文章目录 前言正文机器人平台整体架构&#xff08;ROS2&#xff09;图一、个人理解整体架构 ROS2架构图一、个人理解ROS2整体架构图二、开发者整理ROS2整体架构图三、Intel整理ROS2整体架构图四、DDS具体架构说明 ROS2 Control架构图一、官方整整理ROS2 Control整体架构 总结 前…

定长内存池原理及实现

目录 一、池化技术 二、内存池 三、内存池主要解决的问题 四、定长内存池的实现 1.定长内存池的原理 2.框架 3.Delete实现 4.New实现 5.性能测试 五、源码 FixedMemoryPool.h test.cc 一、池化技术 所谓“池化技术”&#xff0c;就是程序先向系统申请过量的资源&…

广告推荐算法 - 学习笔记

文章目录 1、前言2、学习笔记2.1、什么是计算广告系统&#xff1f; 1、前言 本篇博客&#xff0c;是我用来记录学习广告推荐算法的一些笔记和总结。 参考内容&#xff1a; 1、王喆&#xff1a;"深度"学习计算广告 2、deepseek 2、学习笔记 2.1、什么是计算广告系统…

卷积神经网络的原理、实现及变体

卷积神经网络convolutional neural network&#xff0c;CNN 是为处理图像数据而生的网络&#xff0c;主要由卷积层&#xff08;填充和步幅&#xff09;、池化层&#xff08;汇聚层&#xff09;、全连接层组成。 卷积 虽然卷积层得名于卷积&#xff08;convolution&#xff09…