增强现实系列—深入探索ARKit:平面检测、三维模型放置与增强现实交互

🌟🌟 欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。

🚀 探索专栏:学步_技术的首页 —— 持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。

🔍 技术导航:

  • 人工智能:深入探讨人工智能领域核心技术。
  • 自动驾驶:分享自动驾驶领域核心技术和实战经验。
  • 环境配置:分享Linux环境下相关技术领域环境配置所遇到的问题解决经验。
  • 图像生成:分享图像生成领域核心技术和实战经验。
  • 虚拟现实技术:分享虚拟现实技术领域核心技术和实战经验。

🌈 非常期待在这个数字世界里与您相遇,一起学习、探讨、成长。不要忘了订阅本专栏,让我们的技术之旅不再孤单!

💖💖💖 ✨✨ 欢迎关注和订阅,一起开启技术探索之旅! ✨✨

文章目录

  • 1. 背景介绍
  • 2. ARKit平面检测技术详解
  • 3. 三维模型放置
  • 4. 增强现实交互
  • 5. 应用场景与代码示例
  • 6. 结语

1. 背景介绍

ARKit是由苹果公司推出的一项创新技术,自2017年首次亮相以来,它便不断推动移动设备上的增强现实体验向前发展。作为一个集成了高级计算机视觉、图形处理和传感器数据的框架,ARKit不仅为开发者提供了丰富的API,还通过不断的更新迭代,引入了更多创新功能,如面部追踪、环境理解以及与真实世界无缝融合的虚拟对象。本文所涉及到的应用代码已打包上传至AR开发基础 + ARKit + 平面检测与视觉效果 + 开发初学者教育与引导。
在这里插入图片描述

技术演进带来的创新机遇
平面检测是ARKit中用于识别和追踪水平或垂直表面的关键技术。通过视觉惯性里程计(VIO)技术,ARKit能够分析摄像头捕获的图像序列中的特征点,并结合设备的运动传感器数据,实现对设备位置和姿态的精确估计。当启用平面检测功能时,ARKit会在构建的网格中考虑这些信息,并在检测到平面时对网格进行平滑处理,以提供更准确的平面信息。
在这里插入图片描述
随着ARKit的不断演进,它已经从最初的基础平面检测和简单的虚拟物体叠加,发展到现在能够实现更为复杂和精准的3D场景理解。这些技术进步为开发者带来了新的机遇,使他们能够在教育、游戏、零售、室内设计等多个领域中,探索更多创新的AR应用场景。

平面检测技术的原理与应用
平面检测是ARKit中的一个关键功能,它允许系统在用户所处的环境中识别出水平或垂直的表面。这项技术基于先进的计算机视觉算法,通过分析摄像头捕获的图像序列,识别出场景中的特征点,并结合设备的传感器数据,实现对这些平面的精确追踪和尺寸估计。平面检测不仅为虚拟物体提供了一个稳定且直观的放置位置,还为用户与这些虚拟对象之间的交互提供了基础。

三维模型放置的实现机制
在ARKit中,三维模型放置是一个将虚拟内容与现实世界相结合的创造性过程。开发者可以利用ARKit提供的工具和API,如SCNScene和SCNNode,来创建和控制3D模型。通过这些工具,开发者可以在检测到的平面上放置虚拟家具、游戏角色或其他任何3D对象,实现虚拟与现实的融合,并为用户提供一种全新的视觉和交互体验。

基于平面的交互功能
除了平面检测和三维模型放置,ARKit还提供了基于平面的交互功能,使用户能够与虚拟对象进行更自然和直观的交云。通过实现光线投射(Raycasting)技术,ARKit能够响应用户的触摸或手势操作,允许用户通过点击、拖动等动作与虚拟物体进行互动。这种交互方式不仅增强了用户的沉浸感,还为AR应用提供了更丰富的功能和更好的用户体验。

本文的探讨重点
在本文中,我们将深入探讨ARKit的这些核心技术,并分析它们在不同应用场景下的实际工作方式。通过提供详尽的代码示例和应用场景分析,本文旨在帮助开发者更好地理解ARKit的功能,并激发他们在AR领域的创新思维。无论是对于初学者还是有经验的开发者,本文都将成为他们在ARKit开发旅程中的宝贵资源。

2. ARKit平面检测技术详解

平面检测作为ARKit中的核心功能之一,它允许开发者识别和追踪现实世界中的水平或垂直表面,如地面、桌面等。这项技术背后依赖的是视觉惯性里程计(VIO)技术,通过分析摄像头捕获的图像序列中的特征点,并结合设备的运动传感器数据,实现对设备位置和姿态的精确估计。

当启用ARKit的平面检测功能时,系统会在构建的网格中考虑平面信息,并在检测到平面时对网格进行平滑处理,提供更准确的平面数据。这种网格平滑处理,特别是在使用激光雷达扫描仪的设备上,如第四代iPad Pro,可以快速地从用户面前的广阔区域中获取深度信息,从而创建物理环境的多边形模型。

ARKit的平面检测不仅限于基本的表面识别,它还能够对现实世界中的物体进行分类,如区分地板、桌子、座椅、窗户和天花板等。这一功能通过ARMeshClassification实现,增强了虚拟内容与现实世界物体的交互性,例如,可以使虚拟的圆球在撞击现实世界中的墙壁后,根据物理定律弹开。

此外,ARKit 6引入了Depth API,利用激光雷达扫描仪中的逐像素深度信息,结合3D网格数据,实现更精准的虚拟物体放置,让遮挡效果更加逼真。这为应用如更精确的测量或对用户环境应用效果提供了可能。

在实际应用中,ARKit的平面检测功能可以用于各种场景,例如在教育领域,通过将虚拟模型放置在真实世界中,学生可以更直观地了解复杂概念;在游戏领域,可以在现实世界的表面上创建互动式游戏体验;在室内设计中,用户可以预览家具在实际空间中的摆放效果。

ARKit的平面检测技术通过结合先进的传感器数据和计算机视觉算法,为开发者提供了在现实世界中创造丰富AR体验的能力。随着技术的进步和功能的扩展,ARKit在不同领域的应用潜力正逐步被挖掘和实现。

3. 三维模型放置

在平面检测的基础上,ARKit可以在识别的表面上放置三维模型。这一过程涉及到使用SCNScene构建虚拟的3D世界,并通过SCNNode将3D模型添加到场景中。例如,通过SCNBox可以创建一个立方体几何体,并将其作为节点添加到场景的rootNode中,实现在现实世界中的虚拟物体放置。

4. 增强现实交互

ARKit不仅支持在现实世界中放置虚拟对象,还允许用户与这些对象进行交云。通过实现光线投射(Raycasting)技术,ARKit能够响应用户的点击或手势操作,实现对虚拟物体的旋转、移动等交互效果。例如,通过检测用户触摸屏幕的位置,并执行raycastQuery,可以将虚拟物体放置在用户点击的现实世界表面上。

5. 应用场景与代码示例

ARKit的平面检测和三维模型放置功能在多个领域有着广泛的应用。下面是一个平面检测和三维模型放置的代码,可参考。

import UIKit
import SceneKit
import ARKitfinal class ViewController: UIViewController {//MARK: - Outlets@IBOutlet var sceneView: ARSCNView!//MARK: - Variablesvar sceneNodeItems = [SCNNode]()override func viewDidLoad() {super.viewDidLoad()// Set the view's delegatesceneView.delegate = self// Enable auto lighting to brighten the scenesceneView.autoenablesDefaultLighting = true// Enable debugging in scenesceneView.debugOptions = [.showFeaturePoints]}override func viewWillAppear(_ animated: Bool) {super.viewWillAppear(animated)// Create a session configurationlet configuration = ARWorldTrackingConfiguration()// Set plane detection configurationconfiguration.planeDetection = .horizontal// Run the view's sessionsceneView.session.run(configuration)}override func viewWillDisappear(_ animated: Bool) {super.viewWillDisappear(animated)// Pause the view's sessionsceneView.session.pause()}@IBAction func trashTapped(_ sender: UIBarButtonItem) {// Remove every node from parentfor item in sceneNodeItems {item.removeFromParentNode()}// Emptied node arraysceneNodeItems = []}
}//MARK: - ARSCNViewDelegate
extension ViewController : ARSCNViewDelegate {// Allow to create planefunc renderer(_ renderer: SCNSceneRenderer, didAdd node: SCNNode, for anchor: ARAnchor) {// Determine if anchor detected was ARPlaneAnchorguard let planeAnchor = anchor as? ARPlaneAnchor else {print("Could not found any plane anchor")return}// Create a new plane and set it size based on plane detectedlet horizontalPlane = SCNPlane(width: CGFloat(planeAnchor.extent.x), height: CGFloat(planeAnchor.extent.z))// Create material for horizontal planelet colorMaterial = SCNMaterial()// Assign content with UIColorcolorMaterial.diffuse.contents = UIColor(white: 1, alpha: 0.5)// Add meterial to planehorizontalPlane.materials = [colorMaterial]// Create a new node for horizontal planelet planeNode = SCNNode(geometry: horizontalPlane)// Specify the node positionplaneNode.position = SCNVector3(x: planeAnchor.center.x, y: 0, z: planeAnchor.center.z)// Rotate the plane in X axis, by default SceneKit plane is in verticalplaneNode.eulerAngles.x = -.pi / 2// Adding node as a child node, allow to display on scene of detected planenode.addChildNode(planeNode)// Add plane node to arraysceneNodeItems.append(planeNode)}
}extension ViewController {// Allow to detect touch on the screenoverride func touchesBegan(_ touches: Set<UITouch>, with event: UIEvent?) {// Get the first touch on the screenguard let touch = touches.first else {print("Could not get the first touch")return}// Get the location of the touch (2D Coordinate) from the sceneViewlet touchLocation = touch.location(in: sceneView)// Make a query to convert 2D to 3D coordinateguard let raycastQuery = sceneView.raycastQuery(from: touchLocation,allowing: .estimatedPlane,alignment: .horizontal) else {print("Could not make raycast query to convert 2D ro 3D coordiate")return}// Return results from querylet queryResults = sceneView.session.raycast(raycastQuery)// Get the first item in query resultsguard let result = queryResults.first else {return}// Create a scene for the 3D model from assetslet houseScene = SCNScene(named: "art.scnassets/skytower.scn")!// Create and get the first node in 3D modellet houseNode = houseScene.rootNode.childNodes.first!// Position the node based on user touch locationhouseNode.position = SCNVector3(x: result.worldTransform.columns.3.x,y: result.worldTransform.columns.3.y,z: result.worldTransform.columns.3.z)// Add house node to rootnode of the scene to display the model in your worldsceneView.scene.rootNode.addChildNode(houseNode)// Add house node to arraysceneNodeItems.append(houseNode)}
}

以下是一些应用场景的代码示例:

  1. 家居设计:用户可以在真实的空间中预览家具的摆放效果。

    let furnitureScene = SCNScene(named: "furniture.scn")
    let furnitureNode = furnitureScene.rootNode.childNodes.first!
    furnitureNode.position = SCNVector3(x: detectedPlaneCenter.x, y: 0.1, z: detectedPlaneCenter.z)
    sceneView.scene.rootNode.addChildNode(furnitureNode)
    
  2. 教育领域:通过三维模型和动画,复杂的概念和理论得以直观展示。

    let educationalModel = SCNSphere(radius: 0.05)
    let modelNode = SCNNode(geometry: educationalModel)
    modelNode.position = SCNVector3(x: touchLocation.x, y: 0.2, z: touchLocation.y)
    sceneView.scene.rootNode.addChildNode(modelNode)
    
  3. 游戏娱乐:将虚拟角色和元素融入现实世界,提供新颖的游戏体验。

    let gameCharacterScene = SCNScene(named: "character.scn")
    let characterNode = gameCharacterScene.rootNode.childNodes.first!
    characterNode.position = SCNVector3(x: raycastResult.position.x, y: 0.1, z: raycastResult.position.z)
    sceneView.scene.rootNode.addChildNode(characterNode)
    

6. 结语

随着ARKit技术的不断进步,其在各个行业的应用潜力正逐步被挖掘。从家居设计到教育,再到游戏娱乐,ARKit正在改变我们与数字内容互动的方式。通过本文的深入分析和代码示例,我们可以看到ARKit如何将虚拟世界与现实世界无缝融合,为用户带来前所未有的增强现实体验。

🌟 在这篇博文的旅程中,感谢您的陪伴与阅读。如果内容对您有所启发或帮助,请不要吝啬您的点赞 👍🏻,这是对我最大的鼓励和支持。

📚 本人虽致力于提供准确且深入的技术分享,但学识有限,难免会有疏漏之处。如有不足或错误,恳请各位业界同仁在评论区留下宝贵意见,您的批评指正是我不断进步的动力!😄😄😄

💖💖💖 如果您发现这篇博文对您的研究或工作有所裨益,请不吝点赞、收藏,或分享给更多需要的朋友,让知识的力量传播得更远。

🔥🔥🔥 “Stay Hungry, Stay Foolish” —— 求知的道路永无止境,让我们保持渴望与初心,面对挑战,勇往直前。无论前路多么漫长,只要我们坚持不懈,终将抵达目的地。🌙🌙🌙

👋🏻 在此,我也邀请您加入我的技术交流社区,共同探讨、学习和成长。让我们携手并进,共创辉煌!
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/400198.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniapp自定义navigationBar

最终效果&#xff1a; 一、关闭默认导航栏 pages.json文件中&#xff0c;对单个页面关闭 "navigationStyle": "custom" "pages": [ //pages数组中第一项表示应用启动页&#xff0c;参考&#xff1a;https://uniapp.dcloud.io/collocation/pag…

惊!北京三害、上海四毒、广东五虎,谁才是互联网界的“拼命三郎”?

在互联网江湖中&#xff0c;流传着这样一份神秘的“工作强度排名”&#xff0c;它们以地域为划分&#xff0c;将那些被公认为加班狂魔的互联网大厂归为了“北京三害”、“上海四毒”和“广东五虎”。 这份名单一出&#xff0c;让人不禁哑然失笑&#xff0c;同时也让人深思&…

计算机网络部分基础知识

网络协议的意义 单台主机内部的设备之间需要发送和接收消息&#xff0c;那么和相隔很远的两台主机之间发送消息有什么区别呢&#xff1f;两台主机通过网络发送消息&#xff0c;相当于两个网卡设备之间进行通信&#xff0c;最大的区别在于距离变长了。而距离变长带来的结果就是&…

.NET 处理 WebAPI JSON 返回烦人的null为空

目录 前言 一、分析问题 1、空值的处理 2、默认值的处理 3、示例代码 二、解决问题 1、返回的Json 2、null替换为空 3、解决方案 三、总结 四、最后 前言 项目开发中不管是前台还是后台都会遇到烦人的null&#xff0c;数据库表中字段允许空值&#xff0c;则代码实体…

【Python】Python单元测试

文章目录 01-单元测试基础什么是单元测试常用的文件结构运行单元测试 02. 断言函数03. Test Fixtures什么是Test Fixtures模块级别的Fixtures类级别的Fixtures方法级别的Fixtures 04.Mock 01-单元测试基础 什么是单元测试常用的文件结构编写第一个单元测试运行单元测试 什么是单…

springsecurity的学习(四):实现授权

简介 springsecurity的授权&#xff0c;自定义授权失败的处理&#xff0c;跨域的处理和自定义权限校验方法的介绍 授权 权限系统作用 在后台进行用户权限的判断&#xff0c;判断当前用户是否有相应的权限&#xff0c;必须具有所需的权限才能进行相应的操作&#xff0c;以此…

【运维】JetBrains Gateway (Pycharm) SSH免密连接,改为免密连接

一直要求输入密码&#xff0c;很烦人&#xff1a; 如何免密连接&#xff1f; 1 重新打开gateway&#xff0c;来到这个界面点新建连接&#xff1a; 2 点这里设置&#xff1a; 3 在这一页&#xff0c;你可以改你的所有配置&#xff0c;只要设置为password并且保存密码&…

MySQL第6讲--DQL(数据查询语言)的基本操作之基本和条件查询

文章目录 前言DQL(数据查询语言)基本操作查询操作基本查询示例1&#xff1a;查询表格的name&#xff0c;age&#xff0c;并返回&#xff1b;示例2&#xff1a;查询表格中的所有字段&#xff1b;示例3&#xff1a;查询所有员工的工号并返回&#xff0c;起别名&#xff1b;示例4&…

基于Python的去哪儿网数据采集与分析可视化大屏设计与实现

摘要 本文旨在介绍如何利用Python进行去哪儿网景点数据的采集与分析。通过采集去哪儿网上的景点数据&#xff0c;我们可以获取大量的旅游相关信息&#xff0c;并基于这些数据进行深入分析和洞察&#xff0c;为旅游行业、市场营销策略以及用户个性化推荐等提供支持。 本文将使用…

实现挂机会议

png py文件 import os import pyautogui import time from typing import Callable, Tuple from datetime import datetime import cv2 import schedule#通过图像模板匹配在屏幕上找到指定区域并操作 def imgAutoClick(tempFile: str, whatDo: Callable[[Tuple[int, int, int…

【机器学习】混淆矩阵(Confusion Matrix)

一、混淆矩阵 True Negative (TN)&#xff1a; 真负类&#xff0c;样本的真实类别是负类&#xff0c;并且模型将其识别为负类&#xff0c;cm[0][0]。False Positive (FP)&#xff1a; 假正类&#xff0c;样本的真实类别是负类&#xff0c;但是模型将其识别为正类&#xff0c;cm…

【C语言】常用函数汇总表

目录 1. C语言常用函数汇总表&#xff08;概念功能&#xff09;1.1 输入/输出函数&#xff08;<stdio.h>&#xff09;1.2 字符串操作函数&#xff08;<string.h>&#xff09;1.3 内存管理函数&#xff08;<stdlib.h>&#xff09;1.4 数学函数&#xff08;<…

【原创】java+springboot+mysql学业跟踪指导管理系统设计与实现

个人主页&#xff1a;程序猿小小杨 个人简介&#xff1a;从事开发多年&#xff0c;Java、Php、Python、前端开发均有涉猎 博客内容&#xff1a;Java项目实战、项目演示、技术分享 文末有作者名片&#xff0c;希望和大家一起共同进步&#xff0c;你只管努力&#xff0c;剩下的交…

Unity物理模块 之 ​2D刚体

本文仅作笔记学习和分享&#xff0c;不用做任何商业用途本文包括但不限于unity官方手册&#xff0c;unity唐老狮等教程知识&#xff0c;如有不足还请斧正​ 1.刚体是什么 在 Unity 中&#xff0c;刚体&#xff08;Rigidbody&#xff09; 是物理引擎中最基本的组件之一&#x…

根据字典值回显,有颜色的

背景 本项目以若依前端vue2版本为例&#xff0c;项目中有根据字典值回显文本的函数selectDictLabel&#xff0c;但是有时候我们需要带颜色的回显&#xff0c;大概这样的 用法 <template v-slotscope><dict-label :options"dangerLevelOptions" :value&qu…

XXL-JOB分布式定时任务框架快速入门

文章目录 前言定时任务分布式任务调度 1、XXL-JOB介绍1.1 XXL-JOB概述1.2 XXL-JOB特性1.3 整体架构 2、XXL-JOB任务中心环境搭建2.1 XXL-JOB源码下载2.2 IDEA导入xxljob工程2.3 初始化数据库2.4 Docker安装任务管理中心 3、XXL-JOB任务注册测试3.1 引入xxl-job核心依赖3.2 配置…

deepin V23前瞻丨deepin V23与飞腾腾锐D3000完成适配,持续丰富deepin操作系统硬件生态

查看原文 近日&#xff0c;自主核心芯片研发飞腾公司宣布与deepin V23完成适配&#xff0c;包含飞腾新一代桌面CPU飞腾腾锐D3000、FT-2000/64、桌面芯片飞腾腾锐D2000等多款产品&#xff0c;为用户带来更智能、安全、稳定的使用体验。 飞腾腾锐D3000集成8个飞腾自主研发的新一…

Golang多版本环境安装并存

1. 准备 请先安装最新版本的Go&#xff0c;详见 https://go.dev/doc/install go version2. 配置镜像加速 go env -w GO111MODULEon go env -w GOPROXYhttps://goproxy.cn,direct3. 安装Go指定版本 Golang官方提供dl工具来实现多版本的Go环境管理&#xff0c;详见项目&#…

小白零基础学数学建模应用系列(二):基于Python的共享单车系统建模与仿真分析

共享单车系统作为一种绿色环保的出行方式&#xff0c;已成为现代城市公共交通的重要组成部分。本文将使用Python编程语言&#xff0c;并结合modsim库&#xff0c;构建并仿真一个共享单车系统的模型&#xff0c;通过这一过程来展示如何进行系统的建模与分析。 文章目录 一、背景…

虚拟化—XenServer安装教程详细(附客户端连接)

&#x1f3e1;作者主页&#xff1a;点击&#xff01; &#x1f427;Linux基础知识(初学)&#xff1a;点击&#xff01; &#x1f427;Linux高级管理防护和群集专栏&#xff1a;点击&#xff01; &#x1f510;Linux中firewalld防火墙&#xff1a;点击&#xff01; ⏰️创作…