python编程-OpenCV(图像读写-图像处理-图像滤波-角点检测-边缘检测)图像变换

形态变换

图像处理中的形态学操作是处理图像结构的有效方法。以下是一些常见的形态学操作的介绍及其在 OpenCV 中的实现示例。

1. 腐蚀(Erosion)

腐蚀操作通过消除图像边界来减少图像中的白色区域(前景),使物体的边界向内收缩。它的作用是去除小的噪点。根据内核的大小,边界附近的所有像素都将被丢弃。因此,前景对象的厚度或大小在图像中减少或只是白色区域减少。它有助于消除小的白色噪音,分离两个连接的对象等。

import cv2
import numpy as np# 读取图像
image = cv2.imread('f:/apple.jpg', 0)
# 定义腐蚀的内核
kernel = np.ones((5,5), np.uint8)
# 进行腐蚀操作  
eroded = cv2.erode(image, kernel, iterations=1)cv2.imshow('Eroded Image', eroded)
cv2.waitKey(0)
cv2.destroyAllWindows()

2. 膨胀(Dilation)

膨胀操作与腐蚀相反,主要是增加图像中的白色区域,使物体的边界向外扩展。

# 进行膨胀操作  
dilated = cv2.dilate(image, kernel, iterations=1)  cv2.imshow('Dilated Image', dilated)  
cv2.waitKey(0)  
cv2.destroyAllWindows()

3. 开运算(Opening)

开运算是先进行腐蚀再进行膨胀,用于去除小的噪声,并保持图像中物体的形状和大小。

# 进行开运算  
opened = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)  cv2.imshow('Opened Image', opened)  
cv2.waitKey(0)  
cv2.destroyAllWindows()

4. 闭运算(Closing)

闭运算是先进行膨胀再进行腐蚀,主要用于填补图像中的小孔洞或黑色区域。

# 进行闭运算  
closed = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)  cv2.imshow('Closed Image', closed)  
cv2.waitKey(0)  
cv2.destroyAllWindows()

5. 形态梯度(Morphological Gradient)

形态梯度是图像膨胀与腐蚀之间的差异,用于提取边缘。

# 进行形态梯度  
gradient = cv2.morphologyEx(image, cv2.MORPH_GRADIENT, kernel)  cv2.imshow('Morphological Gradient', gradient)  
cv2.waitKey(0)  
cv2.destroyAllWindows()

6. 顶帽(Top Hat)

顶帽运算是原图像与开运算结果的差,主要用于突出比周围区域亮的部分。

# 进行顶帽运算  
tophat = cv2.morphologyEx(image, cv2.MORPH_TOPHAT, kernel)  cv2.imshow('Top Hat', tophat)  
cv2.waitKey(0)  
cv2.destroyAllWindows()

7. 黑帽(Black Hat)

黑帽运算是闭运算结果与原图像的差,主要用于突出比周围区域暗的部分。

# 进行黑帽运算  
blackhat = cv2.morphologyEx(image, cv2.MORPH_BLACKHAT, kernel)  cv2.imshow('Black Hat', blackhat)  
cv2.waitKey(0)  
cv2.destroyAllWindows()

几何变换

缩放

缩放是调整图片的大小。 OpenCV 使用cv.resize()函数进行调整。可以手动指定图像的大小,也可以指定比例因子。可以使用不同的插值方法。

import numpy as np
import cv2 as cv
img = cv.imread('image.jpg')
res = cv.resize(img,None,fx=2, fy=2, interpolation = cv.INTER_CUBIC)
#OR
height, width = img.shape[:2]
res = cv.resize(img,(2*width, 2*height), interpolation = cv.INTER_CUBIC)

平移变换
平移变换是物体位置的移动。转换矩阵:

t_x,t_y是方向的偏移量,可以将变换矩阵存为 np.float32 类型的 numpy 数组,并将其作为 cv.warpAffine 的第二个参数。cv.warpAffine 函数的第三个参数是输出图像的大小,其形式应为(宽度、高度)。记住宽度=列数,高度=行数。

import numpy as np
import cv2 as cv
img = cv.imread('image.jpg',0)
rows,cols = img.shape
M = np.float32([[1,0,100],[0,1,50]])
dst = cv.warpAffine(img,M,(cols,rows))
cv.imshow('img',dst)
cv.waitKey(0)
cv.destroyAllWindows()

旋转

旋转矩阵:

但 Opencv 提供了可变旋转中心的比例变换,所以你可以在任意位置旋转图片,修改后的转换矩阵为:

例如旋转90度:

img = cv.imread('image.jpg',0)
rows,cols = img.shape
# cols-1 and rows-1 are the coordinate limits.
M = cv.getRotationMatrix2D(((cols-1)/2.0,(rows-1)/2.0),90,1)
dst = cv.warpAffine(img,M,(cols,rows))

仿射变换
在仿射变换中,原始图像中的所有平行线在输出图像中仍然是平行的。仿射变换是图像处理和计算机视觉中的一种重要技术,用于执行图像的几何变换。它保留了点、直线和面之间的相对位置关系,因此常用于图像的旋转、缩放、平移和倾斜等操作。

仿射变换包括:

  1. 平移(Translation):图像中的每个点沿着 x 和 y 轴移动指定的距离。
  2. 缩放(Scaling):根据指定的比例因子缩放图像的大小。
  3. 旋转(Rotation):绕图像中心点旋转一定的角度。
  4. 倾斜(Shearing):沿 x 或 y 方向对图像进行剪切或倾斜。

结合这些操作,可以通过仿射矩阵来实现任意的仿射变换。仿射变换的矩阵形式可以表示为:

在 OpenCV 中,使用 cv2.warpAffine 函数执行仿射变换。下面是一个示例,展示如何进行平移、缩放和旋转:

import cv2
import numpy as np# 读取图像
image = cv2.imread('f:/apple.jpg')# 获取图像的尺寸
rows, cols, _ = image.shape# 定义仿射变换矩阵
# 这里定义一个平移和缩放的组合
# 平移 tx = 50,ty = 30;缩放 sx = 1.5,sy = 1.5(增加 50%)
M = np.float32([[1.5, 0, 50],[0, 1.5, 30]])# 应用仿射变换
dst = cv2.warpAffine(image, M, (int(cols * 1.5), int(rows * 1.5)))# 显示结果
cv2.imshow('Original Image', image)
cv2.imshow('Transformed Image', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

综合仿射变换

下面是一个完成平移、缩放和旋转组合的仿射变换示例:

import cv2
import numpy as np# 读取图像
image = cv2.imread('f:/apple.jpg')
# 获取图像的中心
center = (image.shape[1] // 2, image.shape[0] // 2)# 定义旋转角度和缩放因子
angle = 45  # 旋转 45 度
scale = 1.0 # 不缩放  # 获取仿射变换矩阵
M = cv2.getRotationMatrix2D(center, angle, scale)# 应用仿射变换
transformed = cv2.warpAffine(image, M, (image.shape[1], image.shape[0]))# 显示结果
cv2.imshow('Original Image', image)
cv2.imshow('Transformed Image', transformed)
cv2.waitKey(0)
cv2.destroyAllWindows()

透视变换
透视变换是一种将图像中某个区域进行变形的技术,使得该区域看起来像从不同的角度观看。透视变换通过将图像中的四个点映射到另一个四边形区域来实现,这样就能够模拟真实世界中由于相机角度变化而引起的视觉变化。

对透视转换,你需要一个 3x3 变换矩阵。即使在转换之后,直线也将保持直线。

要找到这个变换矩阵,需要输入图像上的 4 个点和输出图像上的相应点。在这四点中,任意三点不应该共线。


​在 OpenCV 中,透视变换使用 cv2.getPerspectiveTransform 函数来计算透视变换矩阵,然后用 cv2.warpPerspective 函数应用该变换。
 

import cv2
import numpy as np
from matplotlib import pyplot as pltimg = cv2.imread('f:/apple.jpg')
rows,cols,ch = img.shape
pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]])
pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]])
M = cv2.getPerspectiveTransform(pts1,pts2)
dst = cv2.warpPerspective(img,M,(300,300))
plt.subplot(121),plt.imshow(img),plt.title('Input')
plt.subplot(122),plt.imshow(dst),plt.title('Output')
plt.show()# 读取图像
image = cv2.imread('f:/apple.jpg')# 获取图像的尺寸
height, width = image.shape[:2]# 定义源图像中的四个点(例如,选择四个角点)
pts1 = np.float32([[100, 100], [200, 100], [100, 200], [200, 200]])
# 定义目标图像中的四个点
pts2 = np.float32([[80, 80], [220, 100], [90, 210], [210, 220]])# 计算透视变换矩阵
M = cv2.getPerspectiveTransform(pts1, pts2)# 应用透视变换
warped_image = cv2.warpPerspective(image, M, (width, height))# 显示结果
cv2.imshow('Original Image', image)
cv2.imshow('Warped Image', warped_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

频域变换:傅里叶变换和拉普拉斯变换

Numpy具有FFT软件包进行傅里叶变换。np.fft.fft2() 为我们提供了频率转换。它的第一个参数是输入灰度图像。第二个参数是可选的,它决定输出数组的大小。如果它大于输入图像的大小,则在计算FFT之前用零填充输入图像。如果小于输入图像,将裁切输入图像。如果未传递任何参数,则输出数组的大小将与输入的大小相同。 

使用 NumPy 执行图像的傅里叶变换(FFT)和反傅里叶变换(IFFT):

1. 傅里叶变换(FFT)

np.fft.fft2() 用于计算二维傅里叶变换,适合处理灰度图像。你可以传递一个可选的大小参数来决定输出数组的形状。

2. 逆傅里叶变换(IFFT)

np.fft.ifft2() 用于计算二维逆傅里叶变换,将频域数据转换回时域。

import numpy as np
import cv2
import matplotlib.pyplot as plt# 读取灰度图像
image = cv2.imread('f:/apple.jpg', cv2.IMREAD_GRAYSCALE)# 执行傅里叶变换
# 参数为 image 的 shape 可以控制零填充大小
f_transform = np.fft.fft2(image)# 对傅里叶变换结果进行移位,使得低频部分居中
f_transform_shifted = np.fft.fftshift(f_transform)# 计算幅度谱,以便可视化
magnitude_spectrum = np.log(np.abs(f_transform_shifted) + 1)  # 避免 log(0)# 执行逆傅里叶变换
# 首先对移位后的频域图像进行逆变换
inverse_transform_shifted = np.fft.ifftshift(f_transform_shifted)
recovered_image = np.fft.ifft2(inverse_transform_shifted)# 取实部作为恢复的图像
recovered_image = np.abs(recovered_image)# 显示原始图像、幅度谱和恢复的图像
plt.figure(figsize=(12, 12))plt.subplot(1, 3, 1)
plt.title('Original Image')
plt.imshow(image, cmap='gray')
plt.axis('off')plt.subplot(1, 3, 2)
plt.title('Magnitude Spectrum')
plt.imshow(magnitude_spectrum, cmap='gray')
plt.axis('off')plt.subplot(1, 3, 3)
plt.title('Recovered Image')
plt.imshow(recovered_image, cmap='gray')
plt.axis('off')plt.tight_layout()
plt.show()

OpenCV中的傅立叶变换
OpenCV 为此提供了功能 cv.dft() 和 cv.idft() 。它返回与以前相同的结果,但是有两个通道。第一个通道将具有结果的实部,第二个通道将具有结果的虚部。输入的图像应首先转换为np.float32 。

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt# 读取图像
img = cv.imread('f:/apple.jpg', 0)# 1. 计算傅里叶变换
dft = cv.dft(np.float32(img), flags=cv.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)# 2. 计算幅度谱
magnitude_spectrum = 20 * np.log(cv.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))# 3. 创建掩码,然后将掩码应用于傅里叶变换结果
rows, cols = img.shape
crow, ccol = rows // 2, cols // 2# 创建一个掩码,中心区域为1,其余区域为0(高通滤波器)
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow - 30:crow + 30, ccol - 30:ccol + 30] = 1  # 中心区域为1# 应用掩码
fshift = dft_shift * mask# 4. 计算逆傅里叶变换
f_ishift = np.fft.ifftshift(fshift)  # 反移位
img_back = cv.idft(f_ishift)  # 逆傅里叶变换
img_back = cv.magnitude(img_back[:, :, 0], img_back[:, :, 1])  # 获取复数的幅度# 5. 显示原图、傅里叶变换幅度谱和恢复后的图像
plt.figure(figsize=(12, 6))# 原始图像
plt.subplot(1, 3, 1)
plt.imshow(img, cmap='gray')
plt.title('Input Image')
plt.xticks([]), plt.yticks([])# 幅度谱
plt.subplot(1, 3, 2)
plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('Magnitude Spectrum')
plt.xticks([]), plt.yticks([])# 恢复后的图像
plt.subplot(1, 3, 3)
plt.imshow(img_back, cmap='gray')
plt.title('Recovered Image')
plt.xticks([]), plt.yticks([])plt.tight_layout()  # 自动调整子图参数
plt.show()

拉普拉斯算子是高通滤波器,Sobel是HPF。只需对Laplacian进行傅立叶变换,以获得更大的FFT大小。四种常用算子:

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt# 简单平均滤波器(不带缩放参数)
mean_filter = np.ones((3, 3))# 创建高斯滤波器
x = cv.getGaussianKernel(5, 10)
gaussian = x * x.T# 不同的边缘检测滤波器
# Scharr滤波器(x方向)
scharr = np.array([[-3, 0, 3],[-10, 0, 10],[-3, 0, 3]])# Sobel滤波器(x方向)
sobel_x = np.array([[-1, 0, 1],[-2, 0, 2],[-1, 0, 1]])# Sobel滤波器(y方向)
sobel_y = np.array([[-1, -2, -1],[0, 0, 0],[1, 2, 1]])# 拉普拉斯滤波器
laplacian = np.array([[0, 1, 0],[1, -4, 1],[0, 1, 0]])# 将所有滤波器放入列表中
filters = [mean_filter, gaussian, laplacian, sobel_x, sobel_y, scharr]
filter_name = ['mean_filter', 'gaussian', 'laplacian', 'sobel_x', 'sobel_y', 'scharr']# 计算每个滤波器的傅里叶变换
fft_filters = [np.fft.fft2(f) for f in filters]
fft_shift = [np.fft.fftshift(y) for y in fft_filters]# 计算每个滤波器的幅度谱
mag_spectrum = [np.log(np.abs(z) + 1) for z in fft_shift]# 绘制幅度谱
plt.figure(figsize=(12, 6))
for i in range(6):  # 使用 range 代替 xrangeplt.subplot(2, 3, i + 1)plt.imshow(mag_spectrum[i], cmap='gray')plt.title(filter_name[i])plt.xticks([]), plt.yticks([])plt.tight_layout()  # 调整子图参数
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/4004.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring Boot + Apache POI 实现 Excel 导出:BOM物料清单生成器(支持中文文件名、样式美化、数据合并)

目录 引言 Apache POI操作Excel的实用技巧 1.合并单元格操作 2.设置单元格样式 1. 创建样式对象 2. 设置边框 3. 设置底色 4. 设置对齐方式 5. 设置字体样式 6.设置自动换行 7. 应用样式到单元格 3. 定位和操作指定单元格 4.实现标签-值的形式 5.列宽设置 1. 设…

python(25) : 含有大模型生成的公式的文本渲染成图片并生成word文档(支持flask接口调用)

公式样例 渲染前 \[ \sqrt{1904.615384} \approx 43.64 \] 渲染后 安装依赖 pip install matplotlib -i https://mirrors.aliyun.com/pypi/simple/ requestspip install sympy -i https://mirrors.aliyun.com/pypi/simple/ requestspip install python-docx -i https…

基于32QAM的载波同步和定时同步性能仿真,包括Costas环的gardner环

目录 1.算法仿真效果 2.算法涉及理论知识概要 3.MATLAB核心程序 4.完整算法代码文件获得 1.算法仿真效果 matlab2022a仿真结果如下(完整代码运行后无水印): 仿真操作步骤可参考程序配套的操作视频。 2.算法涉及理论知识概要 载波同步是…

ARP Check

ARP Check所解决的问题 ARP Check主要用于解决ARP欺骗的问题,依赖于DHCP SnoopingIP Source Guard或者是端口安全全局地址绑定来达到防止ARP欺骗的作用 一旦在端口下配置了ARP Check功能,那么如果不是表项中所对应的IPMAC或是IP的话,就会拒…

通信协议之多摩川编码器协议

前言 学习永无止境!本篇是通信协议之多摩川编码器协议,主要介绍RS485硬件层以及软件层帧格式。 注:本文章为学习笔记,部分图片与文字来源于网络/应用手册,如侵权请联系!谢谢! 一、多摩川协议概述…

Web前端第一次作业

主页代码&#xff1a; <!DOCTYPE html> <html lang"zh"> <head> <meta charset"UTF-8"> <meta name"viewport" content"widthdevice-width, initial-scale1.0"> <title>主页</title> …

力扣动态规划-2【算法学习day.96】

前言 ###我做这类文章一个重要的目的还是给正在学习的大家提供方向&#xff08;例如想要掌握基础用法&#xff0c;该刷哪些题&#xff1f;建议灵神的题单和代码随想录&#xff09;和记录自己的学习过程&#xff0c;我的解析也不会做的非常详细&#xff0c;只会提供思路和一些关…

LINUX 内核设计于实现 阅读记录(2025.01.14)

文章目录 一、内核历史1、内核简介2、LINUX 内核与 UNIX 内核比较3、LINUX内核版本命名 二、从内核出发1、获取内核源码&#xff08;1&#xff09;查看Linux内核版本 uname -r&#xff08;2&#xff09;下载源码 https://www.kernel.org/&#xff08;3&#xff09;编译内核 2、…

Phi小模型开发教程:用C#开发本地部署AI聊天工具,只需CPU,不需要GPU,3G内存就可以运行,不输GPT-3.5

大家好&#xff0c;我是编程乐趣。 行业诸多大佬一直在说&#xff1a;“‌2025年将是AI应用元年‌”&#xff0c;虽然说大佬的说法不一定对&#xff0c;但AI趋势肯定没错的。 对于我们程序员来说&#xff0c;储备AI应用开发技能&#xff0c;不管对找工作、接项目、创业肯定是…

Android系统开发(一):AOSP 架构全解析:开源拥抱安卓未来

引言 当我们手握智能手机&#xff0c;流畅地滑动屏幕、切换应用、欣赏动画时&#xff0c;背后其实藏着一套庞大且精密的开源系统——Android AOSP&#xff08;Android Open Source Project&#xff09;。这套系统不仅是所有安卓设备的根基&#xff0c;也是系统开发者的终极 pl…

【机器学习实战入门】基于深度学习的乳腺癌分类

什么是深度学习&#xff1f; 作为对机器学习的一种深入方法&#xff0c;深度学习受到了人类大脑和其生物神经网络的启发。它包括深层神经网络、递归神经网络、卷积神经网络和深度信念网络等架构&#xff0c;这些架构由多层组成&#xff0c;数据必须通过这些层才能最终产生输出。…

ASP .NET Core 学习(.NET9)配置接口访问路由

新创建的 ASP .NET Core Web API项目中Controller进行请求时&#xff0c;是在地址:端口/Controller名称进行访问的&#xff0c;这个时候Controller的默认路由配置如下 访问接口时&#xff0c;是通过请求方法&#xff08;GET、Post、Put、Delete&#xff09;进行接口区分的&…

TextButton组件的功能与用法

文章目录 1 概念介绍2 使用方法3 示例代码 我们在上一章回中介绍了CircleAvatar Widget,本章回中将介绍Button这种Widget&#xff0c;闲话休提&#xff0c;让我们一起Talk Flutter吧。 1 概念介绍 关于Button相信大家都很熟悉&#xff0c;也就是我们常用的按钮。用户按下按钮后…

3. 后端验证前端Token

书接上回&#xff0c;后端将token返回给前端&#xff0c;前端存入cookie&#xff0c;每次前端给后端发送请求&#xff0c;后端是如何验证的。 若依是用过滤器来实现对请求的验证&#xff0c;过滤器的简单理解是每次发送请求的时候先发送给过滤器执行逻辑判断以及处理&#xff0…

RabbitMQ-消息可靠性以及延迟消息

目录 消息丢失 一、发送者的可靠性 1.1 生产者重试机制 1.2 生产者确认机制 1.3 实现生产者确认 &#xff08;1&#xff09;开启生产者确认 &#xff08;2&#xff09;定义ReturnCallback &#xff08;3&#xff09;定义ConfirmCallback 二、MQ的持久化 2.1 数据持久…

大文件上传服务-后端V1V2

文章目录 大文件上传概述:minio分布式文件存储使用的一些技术校验MD5的逻辑 uploadV1 版本 1uploadv2 版本 2 大文件上传概述: 之前项目做了一个文件上传的功能,最近看到有面试会具体的问这个上传功能的细节&#xff0c;把之前做的项目拿过来总结一下&#xff0c;自己写的一个…

Web小练习01

#制作简易网页# 本章包括主页、注册页面、登陆页面 主页 1.1主页代码如下 <!DOCTYPE html> <html lang"zh"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1…

SpringBoot多级配置文件

1.问题先导 有这样的场景&#xff0c;我们开发完毕后需要测试人员进行测试&#xff0c;由于测试环境和开发环境的很多配置都不相同&#xff0c;所以测试人员在运 行我们的工程时需要临时修改很多配置&#xff0c;如下 java –jar springboot.jar –-spring.profiles.activete…

2,Linux文件基本属性(基于Ubuntu示例进行讲解)

创建文件 创建文件touch命令创建文件夹mkdir命令写入文件内容echo命令 # 创建文件夹&#xff0c;文件夹名称为demo_001 mkdir demo_001# 创建文件&#xff0c;文件名称为demo_file_001.py touch demo_file_001.py# 写入内容到文件中&#xff0c;例如写入print("hello wo…

蓝桥杯训练—斐波那契数列

文章目录 一、题目二、解析三、代码 一、题目 求100以内的斐波那契数列 斐波那契数列&#xff08;Fibonacci sequence&#xff09;&#xff0c;又称黄金分割数列 &#xff0c;因数学家莱昂纳多斐波那契&#xff08;Leonardo Fibonacci&#xff09;以兔子繁殖为例子而引入&…