前言:Hello大家好,我是小哥谈。本文提出一种基于归一化的注意力模块(NAM),可以降低不太显著的特征的权重,这种方式在注意力模块上应用了稀疏的权重惩罚,这使得这些权重在计算上更加高效,同时能够保持同样的性能。我们在ResNet和MobileNet上和其他的注意力方式进行了对比,我们的方法可以达到更高的准确率。🌈
目录
🚀1.基础概念
🚀2.网络结构
🚀3.添加步骤
🚀4.改进方法
🍀🍀步骤1:block.py文件修改
🍀🍀步骤2:__init__.py文件修改
🍀🍀步骤3:tasks.py文件修改
🍀🍀步骤4:创建自定义yaml文件
🍀🍀步骤5:新建train.py文件
🍀🍀步骤6:模型训练测试